Mathematical model of a SCIR epidemic system with migration and nonlinear incidence function
Authors
M. C. Gómez
- Department of Mathematics and Statistics, University of Nariño, Pasto, Nariño, Colombia.
E. I. Mondragon
- Department of Mathematics and Statistics, University of Nariño, Pasto, Nariño, Colombia.
F. A. Rubio
- Institute of Collective Health, Federal University of Bahia, Salvador, Brazil.
Abstract
In this paper, we proposed a generalization for a model that considers Susceptible, Infected, Carrier, and Recovered by introducing a general incidence rate and considering migration in all its populations. This model has the characteristic that carriers and infected can transmit the disease, besides it has not a disease-free equilibrium point and no basic reproductive number. The focus of this study is to show a generalized model and the conditions required to analyze the equilibrium point stability. Using an appropriate Lyapunov function and with suitable conditions on the functions involved in the general incidence, we showed that the disease equilibrium point is globally asymptotically stable. Also, we presented numerical simulations of two applications to illustrate the results obtained from the analytical part.
Share and Cite
ISRP Style
M. C. Gómez, E. I. Mondragon, F. A. Rubio, Mathematical model of a SCIR epidemic system with migration and nonlinear incidence function, Journal of Mathematics and Computer Science, 31 (2023), no. 4, 345--352
AMA Style
Gómez M. C., Mondragon E. I., Rubio F. A., Mathematical model of a SCIR epidemic system with migration and nonlinear incidence function. J Math Comput SCI-JM. (2023); 31(4):345--352
Chicago/Turabian Style
Gómez, M. C., Mondragon, E. I., Rubio, F. A.. "Mathematical model of a SCIR epidemic system with migration and nonlinear incidence function." Journal of Mathematics and Computer Science, 31, no. 4 (2023): 345--352
Keywords
- Global stability
- migration
- Lypunov function
- non-linear incidence rate
MSC
References
-
[1]
F. Balloux, L. van Dorp, Q&A: What are pathogens, and what have they done to and for us?, BMC biol., 15 (2017), 1–6
-
[2]
H. R. Bhapkar, P. N. Mahalle, N. Dey, K. C. Santosh, Revisited COVID-19 Mortality and Recovery Rates: Are we Missing Recovery Time Period?, J. Med. Syst., 44 (2020), 1–5
-
[3]
E. J. Carr, E. J. Carr, J. Dooley, J. E. Garcia-Perez, V. Lagou, J. C. Lee, C. Wouters, I. Meyts, A. Goris, G. Boeckxstaens, M. A. Linterman, A. Liston, The cellular composition of the human immune system is shaped by age and cohabitation, Nat. Immunol., 17 (2016), 461–468
-
[4]
F. Castelli, G. Sulis, Migration and infectious diseases, Clin. Microbiol. Infect., 23 (2017), 283–289
-
[5]
Centers for Disease Control and Prevention [n.d.],, Symptoms of COVID-19 — CDC, , (Accessed 02 September (2022).),
-
[6]
M. Chen, M. Li, Y. Hao, Z. Liu, L. Hu, L. Wang, The introduction of population migration to SEIAR for COVID-19 epidemic modeling with an efficient intervention strategy, Inf. Fusion, 64 (2020), 252–258
-
[7]
M. C. G´omez, E. I. Mondragon, Global stability analysis for a SEI model with nonlinear incidence rate and asymptomatic infectious state, Appl. Math. Comput., 402 (2021), 7 pages
-
[8]
M. C. G´omez, E. I. Mondragon, P. L. Molano, Global stability analysis for a model with carriers and non-linear incidence rate, J. Biol. Dyn., 14 (2020), 409–420
-
[9]
H. Guo, M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413–2430
-
[10]
B. D. Gushulak, D. W. MacPherson, Globalization of infectious diseases: the impact of migration, Clin. Infect. Dis., 38 (2004), 1742–1748
-
[11]
W. M. Haddad, V. Chellaboina, Q. Hui, Nonnegative and compartmental dynamical systems, Princeton University Press, Princeton (2010)
-
[12]
J. Hawker, N. Begg, I. Blair, R. Reintjes, J. Weinberg, K. Ekdahl, Communicable disease control and health protection handbook, John Wiley & Sons, Chichester (2018)
-
[13]
P. Heuveline, Global and National Declines in Life Expectancy: An End-of-2021 Assessment, Popul. Dev. Rev., 48 (2022), 31–50
-
[14]
G. Huang, C. Nie, Y. Dong, Global stability for an SEI model of infectious diseases with immigration and age structure in susceptibility, Int. J. Biomath., 12 (2019), 15 pages
-
[15]
M. A. Johansson, T. M. Quandelacy, S. Kada, P. V. Prasad, M. Steele, J. T. Brooks, R. B. Slayton, M. Biggerstaff, J. C. Butler, SARS-CoV-2 Transmission From People Without COVID-19 Symptoms, JAMA Netw. Open, 4 (2021), 1–8
-
[16]
B. Kammegne, K. Oshinubi, O. Babasola, O. J. Peter, O. B. Longe, R. B. Ogunrinde, E. O. Titiloye, R. T. Abah, J. Demongeot, Mathematical Modelling of the Spatial Distribution of a COVID-19 Outbreak with Vaccination Using Diffusion Equation, Pathogens, 12 (2023), 1–19
-
[17]
Z. A. Khan, A. L. Alaoui, A. Zeb, M. Tilioua, S. Djilali, Global dynamics of a SEI epidemic model with immigration and generalized nonlinear incidence functional, Results Phys., 27 (2021), 1–5
-
[18]
N. Khan, J. Cailhol, Are migration routes disease transmission routes? Understanding Hepatitis and HIV transmission amongst undocumented Pakistani migrants and asylum seekers in a Parisian suburb, Anthropol. Med., 27 (2020), 395– 411
-
[19]
A. R. Marderstein, M. Uppal, A. Verma, B. Bhinder, Z. Tayyebi, J. Mezey, A. G. Clark, O. Elemento, Demographic and genetic factors influence the abundance of infiltrating immune cells in human tissues, Nat. Commun., 11 (2020), 1–14
-
[20]
I. Mokrousov, Major impact of massive migration on spread of Mycobacterium tuberculosis strains, Human Migration: Biocultural Perspectives, (2021),
-
[21]
M. Naim, F. Lahmidi, A. Namir, Threshold dynamics of an SEIS epidemic model with nonlinear incidence rates, Differ. Equ. Dyn. Syst., 2021 (2021), 14 pages
-
[22]
R. Niu, E. W. M. Wong, Y.-C. Chan, M. A. Van Wyk, G. Chen, Modeling the COVID-19 pandemic using an SEIHR model with human migration, IEEE Access, 8 (2020), 195503-195514
-
[23]
O. J. Peter, H. S. Panigoro, M. A. Ibrahim, O. M. Otunuga, T. A. Ayoola, A. O. Oladapo, Analysis and dynamics of measles with control strategies: a mathematical modeling approach, Int. J. Dyn. Control., (2023), 1–15
-
[24]
R. P. Sigdel, C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684–689
-
[25]
S. Y. Tchoumi, H. Rwezaura, M. L. Diagne, G. Gonz´alez-Parra, J. Tchuenche, Impact of infective immigrants on COVID-19 dynamics, Math. Comput. Appl., 27 (2022), 1–12
-
[26]
S. Usaini, A. S. Hassan, S. M. Garba, J. S. Lubuma, Modeling the transmission dynamics of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) with latent immigrants, J. Interdiscip. Math., 22 (2019), 903–930
-
[27]
A. Valsamatzi-Panagiotou, R. Penchovsky, Environmental factors influencing the transmission of the coronavirus 2019: a review, Environ. Chem. Lett., 20 (2022), 1603–1610
-
[28]
N. Vignier, O. Bouchaud, Travel, migration and emerging infectious diseases, EJIFCC, 29 (2018), 175–179
-
[29]
S. Wood, S. E. Harrison, N. Judd, M. A. Bellis, K. Hughes, A. Jones, The impact of behavioural risk factors on communicable diseases: a systematic review of reviews, BMC Public Health, 21 (2021), 1–16
-
[30]
World Health Organization, Life tables, , (Accessed 02 September (2022)),
-
[31]
J. Zhang, J. Li, Z. Ma, Global dynamics of an SEIR epidemic model with immigration of different compartments, Acta Math. Sci. Ser. B, 26 (2006), 551–567
-
[32]
R. Zhang, D. Li, S. Liu, Global analysis of an age-structured SEIR model with immigration of population and nonlinear incidence rate, J. Appl. Anal. Comput., 9 (2019), 1470–1492