Hybrid differential inclusion with nonlocal, infinite-point or Riemann-Stieltjes integral boundary conditions
Authors
Sh. M. Al-Issa
- Faculty of Arts and Sciences, Department of Mathematics, Lebanese International University, Saida, Lebanon.
- Faculty of Arts and Sciences, Department of Mathematics, International University of Beirut, Beirut, Lebanon.
I. H. Kaddoura
- Faculty of Arts and Sciences, Department of Mathematics, Lebanese International University, Saida, Lebanon.
- Faculty of Arts and Sciences, Department of Mathematics, International University of Beirut, Beirut, Lebanon.
H. M. Hamze
- Faculty of Arts and Sciences, Department of Mathematics, Lebanese International University, Saida, Lebanon.
Abstract
Here, we investigate the existence of solutions for the initial value problem of fractional-order differential inclusion containing nonlocal infinite-point or Riemann-Stieltjes integral boundary conditions. The sufficient condition for the uniqueness of the
solution will be given. The continuous dependence of the solution will be studied. Finally, an example is provided to illustrate our results.
Share and Cite
ISRP Style
Sh. M. Al-Issa, I. H. Kaddoura, H. M. Hamze, Hybrid differential inclusion with nonlocal, infinite-point or Riemann-Stieltjes integral boundary conditions, Journal of Mathematics and Computer Science, 32 (2024), no. 1, 25--42
AMA Style
Al-Issa Sh. M., Kaddoura I. H., Hamze H. M., Hybrid differential inclusion with nonlocal, infinite-point or Riemann-Stieltjes integral boundary conditions. J Math Comput SCI-JM. (2024); 32(1):25--42
Chicago/Turabian Style
Al-Issa, Sh. M., Kaddoura, I. H., Hamze, H. M.. "Hybrid differential inclusion with nonlocal, infinite-point or Riemann-Stieltjes integral boundary conditions." Journal of Mathematics and Computer Science, 32, no. 1 (2024): 25--42
Keywords
- Functional integro-differential inclusion
- fixed point theorem
- Riemann-Stieltjes integral boundary conditions
- infinite-point boundary conditions
MSC
References
-
[1]
S. Al-Issa, A. M. A. El-Sayed, Positive integrable solutions for nonlinear integral and differential inclusions of fractionalorders, Comment. Math., 49 (2009), 171–177
-
[2]
Sh. M. Al-Issa, N. M. Mawed, Results on solvability of nonlinear quadratic integral equations of fractional orders in Banach algebra, J. Nonlinear Sci. Appl., 14 (2021), 181–195
-
[3]
J. P. Aubin, A. Cellina, Differential Inclusion, Springer-Verlag, Berlin (1984)
-
[4]
Z. Bai, T. Qiu, Existence of positive solution for singular fractional differential equation, Appl. Math. Comput., 215 (2009), 2761–2767
-
[5]
A. Cellina, S. Solimini, Continuous extension of selection, Bull. Polish Acad. Sci. Math., 35 (1987), 573–581
-
[6]
R. F. Curtain, A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic press, London-New York (1977)
-
[7]
K. Deimling, Nonlinear functional Analysis, Springer-Verlag, Berlin (1985)
-
[8]
A. M. A. El-Sayed, Sh. M. Al-Issa, Monotonic integrable solution for a mixed type integral and differential inclusion of fractional orders, Int. J. Differ. Equ. Appl., 18 (2019), 1–9
-
[9]
A. M. A. El-Sayed, Sh. M. Al-Issa, Monotonic solutions for a quadratic integral equation of fractional order, AIMS Math., 4 (2019), 821–830
-
[10]
A. M. A. El-Sayed, S. M. Al-Issa, M. Elmiari, Ulam-type Stability for a Boundary Value Problem of Implicit Fractionalorders Differential Equation, Adv. Dyn. Syst. Appl., 16 (2021), 75–89
-
[11]
A. El-Sayed, R. Gamal, Infinite point and Riemann-Stieltjes integral conditions for an integro-differential equation, Nonlinear Anal. Model. Control, 24 (2019), 733–754
-
[12]
A. El-Sayed, H. Hashem, Sh. Al-Issa, Existence of solutions for an ordinary second-order hybrid functional differential equation, Adv. Difference Equ., 2020 (2020), 10 pages
-
[13]
A. M. A. El-sayed, A.-G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput., 68 (1995), 15–25
-
[14]
A. M. A. El-sayed, A.-G. Ibrahim, Set-valued integral equations of fractional-orders, Appl. Math. Comput., 118 (2001), 113–121
-
[15]
A. N. Kolomogorov, S. V. Fomin, Introductory real analysis, Dover Publications, New York (1975)
-
[16]
N. Kosmatov, A singular boundary value problem for nonlinear differential equations of fractional order, J. Appl. Math. Comput., 29 (2009), 125–135
-
[17]
K. Kuratowski, C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys., 13 (1965), 397–403
-
[18]
V. Lakshmikantham, S. Leela, Differential and integral inequalities: Theory and applications. Vol. II: Functional, partial, abstract, and complex differential equations, Academic Press, New York-London (1969)
-
[19]
K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York (1993)
-
[20]
I. Podlubny, Fractional differential equations, Academic Press, San Diego (1999)
-
[21]
I. Podlubny, A. M. A. EL-Sayed, On two definitions of fractional calculus, Solvak Academy of science-Institute of Experimental phys., (1996)
-
[22]
H. M. Srivastava, A. M. A. El-Sayed, H. H. G. Hashem, Sh. M. Al-Issa, Analytical investigation of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 116 (2022), 19 pages