Kernel function with BFGS quasi-newton methods for solving nonlinear semi-definite problems
Volume 33, Issue 1, pp 1--16
http://dx.doi.org/10.22436/jmcs.033.01.01
Publication Date: November 16, 2023
Submission Date: February 17, 2023
Revision Date: September 20, 2023
Accteptance Date: October 14, 2023
Authors
M. Laouar
- Laboratory of Partial Differential Equations, University of Batna 2, Batna 05000, Algeria.
M. Brahimi
- Laboratory of Partial Differential Equations, University of Batna 2, Batna 05000, Algeria.
I. E. Lakhdari
- Laboratory of Probabilities and Optimizations, University of Biskra, Biskra 07000, Algeria.
Abstract
In this paper, we will improve the practical performance of an interior
points algorithm for convex nonlinear semi-definite optimization, where to minimize a nonlinear convex
objective function subject to nonlinear convex constraints. We will propose a new method
for solving this kind of problem by using a straightforward kernel function and the iterative
Newton directions combined with the Broyden-Fletcher-Goldfarb-Shanno (BFGS in short)
quasi-Newton method. Further, a best polynomial complexity for solving nonlinear convex
problems will be found until now.
Share and Cite
ISRP Style
M. Laouar, M. Brahimi, I. E. Lakhdari, Kernel function with BFGS quasi-newton methods for solving nonlinear semi-definite problems, Journal of Mathematics and Computer Science, 33 (2024), no. 1, 1--16
AMA Style
Laouar M., Brahimi M., Lakhdari I. E., Kernel function with BFGS quasi-newton methods for solving nonlinear semi-definite problems. J Math Comput SCI-JM. (2024); 33(1):1--16
Chicago/Turabian Style
Laouar, M., Brahimi, M., Lakhdari, I. E.. "Kernel function with BFGS quasi-newton methods for solving nonlinear semi-definite problems." Journal of Mathematics and Computer Science, 33, no. 1 (2024): 1--16
Keywords
- Algorithm
- nonlinear semidefinite optimization
- Kernel function
- BFGS quasi-Newton method
MSC
References
-
[1]
K. Amini, M. R. Peyghami, An interior-point algorithm for linear optimization based on a new kernel function, Southeast Asian Bull. Math., 29 (2005), 651–667
-
[2]
P. Armand, J. C. Gilbert, S. J.-J´egou, A feasible BFGS interior point algorithm for solving convex minimization problems, SIAM J. Optim., 11 (2000), 199–222
-
[3]
P. Armand, J. C. Gilbert, S. J.-J´egou, A BFGS-IP algorithm for solving strongly convex optimization problems with feasibility enforced by an exact penalty approach, Math. Program., 92 (2002), 393–424
-
[4]
L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 16 (1966), 1–3
-
[5]
Y. Q. Bai, M. El Ghami, C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim., 15 (2004), 101–128
-
[6]
J. F. Bonnans, J. C. Gilbert, C. Lemar´echal, C. Sagastiz´abal, Optimisation num´erique [Numerical optimization], Springer-Verlag, Berlin (1997)
-
[7]
M. Bouafia, D. Benterki, A. Yassine, An efficient primal-dual interior point method for linear programming problems based on a new kernel function with a trigonometric barrier term, J. Optim. Theory Appl., 170 (2016), 528–545
-
[8]
C. G. Broyden, The convergence of a class of double-rank minimization algorithms. II. The new algorithm, J. Inst. Math. Appl., 6 (1970), 222–231
-
[9]
R. W. Cottle, J.-S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, Boston (1992)
-
[10]
E. A. Djeffal, M. Laouar, A primal-dual interior-point method based on a new kernel function for linear complementarity problem, Asian-Eur. J. Math., 12 (2019), 16 pages
-
[11]
R. Fletcher, A new approach to variable metric algorithms, Comput. J., 13 (1970), 317–322
-
[12]
M. E. Ghami, Y. Q. Bai, C. Roos, Kernel-function based algorithms for semidefinite optimization, RAIRO Oper. Res., 43 (2009), 189–199
-
[13]
D. Goldfarb, A family of variable metric methods derived by variational means, Math. Comp., 24 (1970), 23–26
-
[14]
M. Kojima, N. Megiddo, T. Noma, A. Yoshise, A unified approach to interior point algorithms for linear complementarity problems, Springer-Verlag, Berlin (1991)
-
[15]
Z. Liu, W. Sun, An infeasible interior-point algorithm with full-Newton step for linear optimization, Numer. Algorithms, 46 (2007), 173–188
-
[16]
J. Peng, C. Roos, T. Terklay, Self-regularity: a new paradigm for primal-dual interior-point algorithms, Princeton University Press, Princeton (2002)
-
[17]
C. Roos, A full-Newton step O(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim., 16 (2006), 1110–1136
-
[18]
D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comp., 24 (1970), 647–656
-
[19]
G.-Q. Wang, Y.-Q. Bai, A class of polynomial primal-dual interior-point algorithms for semidefinite optimization, J. Shanghai Univ., 10 (2006), 198–207
-
[20]
S. Wright, Y. Zhang, A superquadratic infeasible-interior-point method for linear complementarity problems, Math. Program., 73 (1996), 269–289