Some new notions of fractional Hermite-Hadamard type inequalities involving applications to the physical sciences
Authors
H. Ahmad
- Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina, 42210 , Saudi Arabia.
- Near East University, Operational Research Center in Healthcare, TRNC Mersin 10, Nicosia, 99138, Turkey.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
R. B. Khokhar
- Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan.
M. Suleman
- Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan.
M. Tariq
- Department of Basic Sciences and Related Studies, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan.
S. K. Ntouyas
- Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece.
J. Tariboon
- Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand.
Abstract
The term convexity in the frame of fractional calculus is a well-established concept
that has assembled significant attention in mathematics and various scientific disciplines for over a century. It offers valuable insights and results in diverse fields, along with practical applications due to its geometric interpretation. Moreover, convexity provides researchers with powerful tools and numerical methods for addressing extensive interconnected problems. In the realm of applied mathematics, convexity, particularly in relation to fractional analysis, finds extensive and remarkable applications.
In this manuscript, we construct new fractional identities for differentiable preinvex functions to strengthen the recently assigned approach even more. Then utilizing these identities, some generalizations of the Hermite-Hadamard type inequality involving generalized preinvexities in the frame of fractional integral operator, namely Riemann-Liouville (R-L) fractional integrals are explored. Finally, we examined some applications to the \(q\)-digamma and Bessel functions via the established results. We used fundamental methods to arrive at our conclusions. We anticipate the techniques and approaches addressed by this study will further pique and spark the researcher's interest.
Share and Cite
ISRP Style
H. Ahmad, R. B. Khokhar, M. Suleman, M. Tariq, S. K. Ntouyas, J. Tariboon, Some new notions of fractional Hermite-Hadamard type inequalities involving applications to the physical sciences, Journal of Mathematics and Computer Science, 33 (2024), no. 1, 27--41
AMA Style
Ahmad H., Khokhar R. B., Suleman M., Tariq M., Ntouyas S. K., Tariboon J., Some new notions of fractional Hermite-Hadamard type inequalities involving applications to the physical sciences. J Math Comput SCI-JM. (2024); 33(1):27--41
Chicago/Turabian Style
Ahmad, H., Khokhar, R. B., Suleman, M., Tariq, M., Ntouyas, S. K., Tariboon, J.. "Some new notions of fractional Hermite-Hadamard type inequalities involving applications to the physical sciences." Journal of Mathematics and Computer Science, 33, no. 1 (2024): 27--41
Keywords
- Convex function
- invex sets
- preinvex functions
- Holder's inequality
- power mean inequality
MSC
- 26A51
- 26A33
- 26D07
- 26D10
- 26D15
References
-
[1]
P. Agarwal, J. Choi, R. B. Paris, Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., 8 (2015), 451–466
-
[2]
T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60 (2005), 1473–1484
-
[3]
A. Barani, A. G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 2012 (2012), 9 pages
-
[4]
D. Breaz, C. Yildiz, L. I. Cotirla, G. Rahman, B. Yerg¨oz, New Hadamard type inequalities for modified h-convex functions, Fractal Fract., 7 (2023), 12 pages
-
[5]
H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910
-
[6]
H. Budak, T. Tunc¸, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718
-
[7]
S. I. Butt, L. Horv´ath, D. Peˇcari´c, J. Pe˘cari´, Cyclic improvements of Jensen’s inequalities—cyclic inequalities in information theory, ELEMENT, Zagreb (2020)
-
[8]
S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential s-convex functions, Turk. J. Sci., 5 (2020), 140–146
-
[9]
S. I. Butt, D. Peˇcari´c, J. Peˇcari´, Several Jensen-Gr¨uss inequalities with applications in information theory, Ukrainian Math. J., 74 (2023), 1888–1908
-
[10]
S. I. Butt, S. Yousaf, A. O. Akdemir, M. A. Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Solitons Fractals, 148 (2021), 14 pages
-
[11]
R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, In: Fractals and fractional calculus in continuum mechanics (Udine, (1996), Springer, Vienna, 378 (1997), 223–276
-
[12]
˙I. ˙Is¸can, A new generalization of some integral inequalities for (,m)-convex functions, Math. Sci., 7 (2013), 8 pages
-
[13]
I. ˙Is¸can, Some new Hermite-Hadamard type inequalities for geometrically convex functions, Math. Sci., 1 (2013), 86–91
-
[14]
S. Jain, K. Mehrez, D. Baleanu, P. Agarwal, Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019), 1–12
-
[15]
M. Kadakal, ˙I. ˙Is¸can, H. Kadakal, K. Bekar, On improvements of some integral inequalities, Honam Math. J., 43 (2021), 441–452
-
[16]
M. B. Khan, M. A. Noor, K. I. Noor, Y.-M. Chu, New Hermite-Hadamard-type inequalities for-convex fuzzy-intervalvalued functions, Adv. Difference Equ., 2021 (2021), 20 pages
-
[17]
S. Khan, M. Adil Khan, S. I. Butt, Y.-M. Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Difference Equ., 2020 (2020), 11 pages
-
[18]
U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146
-
[19]
J.-B. Liu, S. I. Butt, J. Nasir, A. Aslam, A. Fahad, J. Soontharanon, Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator, AIMS Math., 7 (2022), 2123–2140
-
[20]
N. Mehmood, S. I. Butt, D. Peˇcari´c, J. Peˇcari´, Generalizations of cyclic refinements of Jensen’s inequality by Lidstone’s polynomial with applications in information theory, J. Math. Inequal., 14 (2020), 249–271
-
[21]
S. K. Mishra, G. Giorgi, Invexity and Optimization, Springer-Verlag, Berlin (2008)
-
[22]
S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908
-
[23]
M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131
-
[24]
M. A. Noor, Hadamard integral inequalities for product of two preinvex function, Nonlinear Anal. Forum, 14 (2009), 167–173
-
[25]
M. A. Noor, K. I. Noor, Higher order strongly generalized convex functions, Appl. Math. Inf. Sci., 14 (2020), 133–139
-
[26]
M. A. Noor, K. I. Noor, M. U. Awan, Geometrically relative convex functions, Appl. Math. Inf. Sci., 8 (2014), 607–616
-
[27]
M. A. Noor, K. I. Noor, M. U. Awan, Generalized convexity and integral inequalities, Appl. Math. Inf. Sci., 9 (2015), 233–243
-
[28]
M. E. O¨ zdemir, S. I. Butt, B. Bayraktar, J. Nasir, Several integral inequalities for (, s,m)-convex functions, AIMS Math., 5 (2020), 3906–3921
-
[29]
R. Pini, Invexity and generalized convexity, Optimization, 22 (1991), 513–525
-
[30]
T. Rasheed, S. I. Butt, D. Peˇcari´c, J. Peˇcari´c, Generalized cyclic Jensen and information inequalities, Chaos Solitons Fractals, 163 (2022), 9 pages
-
[31]
T. Rasheed, S. I. Butt, D. Peˇcari´c, J. Peˇcari´c, A. O. Akdemir, Uniform treatment of Jensen’s inequality by Montgomery identity, J. Math., 2021 (2021), 17 pages
-
[32]
S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving k-fractional operator for (h,m)-convex functions, Symmetry, 13 (2021), 1–18
-
[33]
E. Set, S. I. Butt, A. O. Akdemir, A. Karaoˇ glan, T. Abdeljawad, New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators, Chaos Solitons Fractals, 143 (2021), 14 pages
-
[34]
G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge (1995)
-
[35]
T. Weir, B. Mond, Pre-inven functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38
-
[36]
S. Wu, M. U. Awan, M. A. Noor, K. I. Noor, S. Iftikhar, On a new class of convex functions and integral inequalities, J. Inequal. Appl., 2019 (2019), 14 pages
-
[37]
X. M. Yang, D. Li, On properties of preinvex functions, J. Math. Anal. Appl., 256 (2001), 229–241