Crank-Nicolson finite element methods for nonlocal problems with \(p\)-Laplace-type operator
Volume 33, Issue 1, pp 57--70
http://dx.doi.org/10.22436/jmcs.033.01.05
Publication Date: November 17, 2023
Submission Date: February 08, 2023
Revision Date: June 11, 2023
Accteptance Date: October 14, 2023
Authors
M. S. D. Haggar
- Department of Mathematics, University of Ndjamena, Chad.
M. Mbehou
- Department of Mathematics, University of Yaounde I, Cameroon.
A. Njifenjou
- Faculty of Industrial Engineering, University of Douala, Cameroon.
Abstract
A theoretical analysis of a Crank-Nicolson Galerkin finite element method for a class of nonlinear nonlocal diffusion problems associated with \(p\)-Laplace-type operator is presented here. It is shown, by a rigorous analysis that the unconditionally optimal error estimates for the fully discrete scheme are established.
The presence of the nonlocal term in the models destroys the sparsity of the
Jacobian matrices when solving the problem numerically using finite element method and Newton-Raphson method. As a consequence, computations consume more time and space in contrast to local problems. To overcome this difficulty, a new algorithm is proposed to avoid the full Jacobian matrix. Finally, some numerical simulations are presented to illustrate our theoretical analysis.
Share and Cite
ISRP Style
M. S. D. Haggar, M. Mbehou, A. Njifenjou, Crank-Nicolson finite element methods for nonlocal problems with \(p\)-Laplace-type operator, Journal of Mathematics and Computer Science, 33 (2024), no. 1, 57--70
AMA Style
Haggar M. S. D., Mbehou M., Njifenjou A., Crank-Nicolson finite element methods for nonlocal problems with \(p\)-Laplace-type operator. J Math Comput SCI-JM. (2024); 33(1):57--70
Chicago/Turabian Style
Haggar, M. S. D., Mbehou, M., Njifenjou, A.. "Crank-Nicolson finite element methods for nonlocal problems with \(p\)-Laplace-type operator." Journal of Mathematics and Computer Science, 33, no. 1 (2024): 57--70
Keywords
- Crank-Nicolson scheme
- Newton-Raphson method
- Galerkin finite element method
- nonlocal diffusion term
- \(p\)-Laplace operator
- optimal error estimate
MSC
References
-
[1]
R. M. Almeida, S. N. Antontsev, J. C. Duque, J. Ferreira, A reaction–diffusion model for the non-local coupled system: existence,uniqueness, long-time behaviour and localization properties of solutions, IMA J. Appl. Math., (2016), 1–21
-
[2]
I. Andrei, Existence theorems for some classes of boundary value problems involving the p(x)-Laplacian, Nonlinear Anal. Model. Control, 13 (2008), 145–158
-
[3]
J. W. Barrett, W. B. Liu, Finite element approximation of the parabolic p-Laplacian, SIAM J. Numer. Anal., 31 (1994), 413–428
-
[4]
H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York (2011)
-
[5]
M. Chipot, The diffusion of a population partly driven by its preferences, Arch. Ration. Mech. Anal., 155 (2000), 237–259
-
[6]
M. Chipot, B. Lovat, Some remarks on non local elliptic and parabolic problems, Nonlinear Anal., 30 (1997), 4619–4627
-
[7]
M. Chipot, T. Savitska, Nonlocal p-Laplace equations depending on the Lp norm of the gradient, Adv. Differential Equations, 19 (2014), 997–1020
-
[8]
P. G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York- Oxford (1978)
-
[9]
M. Daoussa Haggar, M. Mbehou, Optimal error estimates of a linearized second-order bdf scheme for a nonlocal parabolic problem, Arab J. Math. Sci., (2023), 18 pages
-
[10]
J. K. Djoko, J. M. Lubuma, M. Mbehou, On the numerical solution of the stationary power-law Stokes equations: a penalty finite element approach, J. Sci. Comput., 69 (2016), 1058–1082
-
[11]
J. K. Djoko, M. Mbehou, Finite element analysis of the stationary power-law Stokes equations driven by friction boundary conditions, J. Numer. Math., 23 (2015), 21–40
-
[12]
K. Dreij, Q. A. Chaudhry, J. Zhang, K. Sundberg, B. Jernstr¨om, M. Hanke, R. Morgenstern, In silico modeling of the intracellular dynamics of polycyclic aromatic hydrocarbons, Toxicol. Lett., 211 (2012), S60–S61
-
[13]
W. Feng, A. J. Salgado, C.Wang, S. M.Wise, Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45–67
-
[14]
T. Gudi, Finite element method for a nonlocal problem of Kirchhoff type, SIAM J. Numer. Anal., 50 (2012), 657–668
-
[15]
M. Gul, Q. A. Chaudhry, N. Abid, S. Zahid, Simulation of drug diffusion in mammalian cell, Punjab Univ. J. Math., 47 (2015), 11–18
-
[16]
M. Kumar, P. Kumar, Computational method for finding various solutions for a Quasilinear Elliptic Equation of Kirchhoff type, Adv. Eng. Softw., 40 (2009), 1104–1111
-
[17]
J. L. Lions, Quelques M´ethodes de R´esolution des Probl `emes aux Limites Non Lin´eaires, Dunod, Paris (1969)
-
[18]
M. Mbehou, The Euler-Galerkin finite element method for nonlocal diffusion problems with ap-Laplace-type operator, Appl. Anal., 98 (2019), 2031–2047
-
[19]
M. Mbehou, R. Maritz, P. M. D. Tchepmo, Numerical Analysis for a Nonlocal Parabolic Problem, East Asian J. Appl. Math., 6 (2016), 434–447
-
[20]
H. H. Rachford, Jr, Two-level discrete-time Galerkin approximations for second order nonlinear parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), 1010–1026
-
[21]
V. Thom´ee, Galerkin finite element methods for parabolic problems, Springer-Verlag, Berlin (1984)