General types of \(\sup\)-hesitant fuzzy ideals of ternary semigroups
Authors
A. Iampan
- Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand.
N. Lekkoksung
- Division of Mathematics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
S. Lekkoksung
- Division of Mathematics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
P. Julatha
- Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand.
Abstract
General types of the paper [P. Julatha, A. Iampan, Int. J. Fuzzy Log. Intell. Syst., \({\bf 21}\) (2021), 169--175] are discussed. The concepts of \(\sup^{+}_{\gamma}\)-hesitant and \(\sup^{-}_{\delta}\)-hesitant fuzzy (resp., left, right, lateral) ideals of ternary semigroups are introduced, and their properties are investigated. Characterizations of the concepts are given in terms of fuzzy sets, Lukasiewicz (anti-) fuzzy sets, Pythagorean fuzzy sets, hesitant fuzzy sets, and interval-valued fuzzy sets.
Moreover, we show relationships among interval-valued, hesitant, \(\sup\)-hesitant, \(\sup^{+}_{\gamma}\)-hesitant and \(\sup^{-}_{\delta}\)-hesitant fuzzy ideals.
Share and Cite
ISRP Style
A. Iampan, N. Lekkoksung, S. Lekkoksung, P. Julatha, General types of \(\sup\)-hesitant fuzzy ideals of ternary semigroups, Journal of Mathematics and Computer Science, 33 (2024), no. 1, 108--123
AMA Style
Iampan A., Lekkoksung N., Lekkoksung S., Julatha P., General types of \(\sup\)-hesitant fuzzy ideals of ternary semigroups. J Math Comput SCI-JM. (2024); 33(1):108--123
Chicago/Turabian Style
Iampan, A., Lekkoksung, N., Lekkoksung, S., Julatha, P.. "General types of \(\sup\)-hesitant fuzzy ideals of ternary semigroups." Journal of Mathematics and Computer Science, 33, no. 1 (2024): 108--123
Keywords
- General type of \(\sup\)-hesitant fuzzy ideal
- \(\sup\)-hesitant fuzzy ideal
- hesitant fuzzy ideal
- interval-valued fuzzy ideal
- Pythagorean fuzzy ideal
- Lukasiewicz (anti-) fuzzy set
MSC
References
-
[1]
M. Y. Abbasi, A. F. Talee, S. A. Khan, K. Hila, A hesitant fuzzy set approach to ideal theory in -semigroups, Adv. Fuzzy Syst., 2018 (2018), 6 pages
-
[2]
M. A. Ansari, I. A. H. Masmali, Ternary Semigroups in Terms of Bipolar (, )-Fuzzy Ideals, Int. J. Algebra, 9 (2015), 475–486
-
[3]
R. K. Bandaru, On BRK-algebras, Int. J. Math. Math. Sci., 2012 (2012), 12 pages
-
[4]
R. K. Bandaru, N. Rafi, On G-algebras, Sci. Magna, 8 (2012), 1–7
-
[5]
R. Chinram, T. Panityakul, Rough Pythagorean fuzzy ideals in ternary semigroups, J. Math. Comput. Sci., 20 (2020), 303–312
-
[6]
H. Harizavi, Y. B. Jun, Sup-hesitant fuzzy quasi-associative ideals of BCI-algebras, Filomat, 34 (2020), 4189–4197
-
[7]
C. Jana, M. Pal, Application of (, )-soft intersectional sets on BCK/BCI-algebras, Int. J. Intell. Syst. Technol. Appl., 16 (2017), 269–288
-
[8]
C. Jana, M. Pal, Application of bipolar intuitionistic fuzzy soft sets in decision making problem, Int. J. Fuzzy Syst. Appl., 7 (2018), 32–55
-
[9]
C. Jana, M. Pal, On (2,2 _q)-fuzzy Soft BCI-algebras, Missouri J. Math. Sci., 29 (2017), 197–215
-
[10]
C. Jana, T. Senapati, M. Pal, Handbook of Research on Emerging Applications of Fuzzy Algebraic Structures, IGI Global, (2020)
-
[11]
C. Jana, T. Senapati, Cubic G-subalgebras of G-algebras, Ann. Pure Appl. Math., 10 (2015), 105–115
-
[12]
C. Jana, T. Senapati, K. P. Shum, M. Pal, Bipolar fuzzy soft subalgebras and ideals of BCK/BCI-algebras based on bipolar fuzzy points, J. Intell. Fuzzy Syst., 37 (2019), 2785–2795
-
[13]
U. Jittburus, P. Julatha, New generalizations of hesitant and interval-valued fuzzy ideals of semigroups, Adv. Math. Sci. J., 10 (2021), 2199–2212
-
[14]
U. Jittburus, P. Julatha, A. Pumila, N. Chunsee, A. Iampan, R. Prasertpong, New Generalizations of sup-Hesitant Fuzzy Ideals of Semigroups, Int. J. Anal. Appl., 20 (2022), 26 pages
-
[15]
P. Julatha, A. Iampan, A new generalization of hesitant and interval-valued fuzzy ideals of ternary semigroups, Int. J. Fuzzy Log. Intell. Syst., 21 (2021), 169–175
-
[16]
P. Julatha, A. Iampan, inf-hesitant and (sup, inf)-hesitant fuzzy ideals of ternary semigroups, Missouri J. Math. Sci., 35 (2023), 24–45
-
[17]
Y. B. Jun, Łukasiewicz fuzzy subalgebras in BCK-algebras and BCI-algebras, Ann. Fuzzy Math. Inform., 23 (2022), 213–223
-
[18]
Y. B. Jun, Łukasiewicz anti fuzzy set and its application in BE-algebras, Trans. Fuzzy Sets Syst., 1 (2022), 37–45
-
[19]
Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Ann. Fuzzy Math. Inform., 4 (2012), 83–98
-
[20]
S. Kar, B. K. Maity, Some ideals of ternary semigroups, An. S¸tiint¸. Univ. Al. I. Cuza Ias¸i. Mat. (N.S.), 57 (2011), 247–258
-
[21]
S. Kar, P. Sarkar, Fuzzy ideals of ternary semigroups, Fuzzy Inf. Eng., 4 (2012), 181–193
-
[22]
D. H. Lehmer, A Ternary Analogue of Abelian Groups, Amer. J. Math., 54 (1932), 329–338
-
[23]
D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31
-
[24]
G. Muhiuddin, H. Harizavi, Y. B. Jun, Ideal theory in BCK/BCI-algebras in the frame of hesitant fuzzy set theory, Appl. Appl. Math., 15 (2020), 337–352
-
[25]
G. Muhiuddin, Y. B. Jun, Sup-hesitant fuzzy subalgebras and its translations and extensions, Ann. Commun. Math., 2 (2019), 48–56
-
[26]
P. Phummee, S. Papan, C. Noyoampaeng, U. Jittburus, P. Julatha, A. Iampan, sup-Hesitant Fuzzy Interior Ideals of Semigroups and Their sup-Hesitant Fuzzy Translations, Int. J. Innov. Comput. Inform. Control, 18 (2022), 121–132
-
[27]
M. L. Santiago, S. Sri Bala, Ternary semigroups, Semigroup Forum, 81 (2010), 380–388
-
[28]
M. Shabir, N. Rehman, Characterizations of ternary semigroups by their anti fuzzy ideals, Ann. Fuzzy Math. Inform., 2 (2011), 227–238
-
[29]
F. M. Sioson, Ideal theory in ternary semigroups, Math. Japon., 10 (1965), 63–84
-
[30]
S. Suebsung, R. Chinram, Interval valued fuzzy ideal extensions of ternary semigroups, Int. J. Math. Comput. Sci., 13 (2018), 15–27
-
[31]
A. F. Talee, M. Y. Abassi, S. A. Khan, Hesitant fuzzy ideals in semigroups with a frontier, Arya Bhatta J. Math. Inform., 9 (2017), 163–170
-
[32]
A. F. Talee, M. Y. Abbasi, S. A. Khan, Hesitant fuzzy sets approach to ideal theory in ternary semigroups, Int. J. Appl. Math., 31 (2018), 527–539
-
[33]
V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539
-
[34]
V. Torra, Y. Narukawa, On Hesitant Fuzzy Sets and Decision, In: IEEE International Conference on Fuzzy Systems, 2009 (2009), 1378–1382
-
[35]
R. R. Yager, A. M. Abbasov, Pythagorean Membership Grades, Complex Numbers, and Decision Making, Int. J. Intell. Syst., 28 (2013), 436–452
-
[36]
R. R. Yager, Pythagorean Fuzzy Subsets, Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting, 2013 (2013), 57–61
-
[37]
N. Yaqoob, M. A. Ansari, Bipolar (, )-fuzzy ideals in ternary semigroups, Int. J. Math. Anal. (Ruse), 7 (2013), 1775– 1782
-
[38]
L. A. Zadeh, Fuzzy Sets, Inf. Control, 8 (1965), 338–353
-
[39]
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning. I, Information Sci., 8 (1975), 199–249