A qualitative investigation of some rational difference equations
Volume 34, Issue 1, pp 1--10
https://dx.doi.org/10.22436/jmcs.034.01.01
Publication Date: February 12, 2024
Submission Date: December 08, 2023
Revision Date: December 22, 2023
Accteptance Date: January 03, 2024
Authors
H. El-Metwally
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
M. T. Alharthi
- Department of Mathematics, Faculty of Science, Jeddah University, Jeddah, Saudi Arabia.
Abstract
In this paper we study some qualitative properties of the solutions for the
following difference equation
\[
y_{n+1}=\frac{\alpha +\alpha _{0} y_{n}^{r}+\alpha
_{1} y_{n-1}^{r}+\cdots+\alpha _{k} y_{n-k}^{r}}{\beta +\beta
_{0} y_{n}^{r}+\beta _{1} y_{n-1}^{r}+\cdots+\beta _{k} y_{n-k}^{r}}%
,~~~~n\geq 0,\tag{I}
\]
where \(r, \alpha , \alpha _{0}, \alpha _{1},\ldots, \alpha _{k},
\beta , \beta _{0}, \beta _{1},\ldots, \beta _{k}\in (0,\infty )\) and \(k \) is a non-negative integer number. We find the equilibrium points for the
considered equation. Then classify these points in terms of local stability
or not. We investigate the boundedness and the global stability of the
solutions for the considered equation. Also we study the existence of
periodic solutions of Eq. (I).
Share and Cite
ISRP Style
H. El-Metwally, M. T. Alharthi, A qualitative investigation of some rational difference equations, Journal of Mathematics and Computer Science, 34 (2024), no. 1, 1--10
AMA Style
El-Metwally H., Alharthi M. T., A qualitative investigation of some rational difference equations. J Math Comput SCI-JM. (2024); 34(1):1--10
Chicago/Turabian Style
El-Metwally, H., Alharthi, M. T.. "A qualitative investigation of some rational difference equations." Journal of Mathematics and Computer Science, 34, no. 1 (2024): 1--10
Keywords
- Boundedness
- local stability
- periodicity
- global stability
MSC
References
-
[1]
S. S. Askar, A. M. Alshamrani, K. Alnowibet, The arising of cooperation in Cournot duopoly games, Appl. Math. Comput., 273 (2016), 535–542
-
[2]
C. C¸ inar, On the positive solutions of the difference equation xn+1 = (xn-1)=(1 + xnxn-1), Appl. Math. Comput., 150 (2004), 21–24
-
[3]
S. N. Elaydi, Discrete chaos: with applications in science and engineering, Chapman and Hall/CRC, (2007)
-
[4]
I. M. Elbaz, H. El-Metwally, M. A. Sohaly, Dynamics of delayed Nicholson’s blowflies models, J. Biol. Systems, 30 (2022), 741–759
-
[5]
I. M. Elbaz, H. El-Metwally, M. A. Sohaly, Viral kinetics, stability and sensitivity analysis of the within-host COVID-19 model, Sci. Rep., 13 (2023), 13 Pages
-
[6]
I. M. Elbaz, M. A. Sohaly, H. El-Metwally, Modeling the stochastic within-host dynamics SARS-CoV-2 infection with discrete delay, Theory Biosci., 141 (2022), 365–374
-
[7]
H. El-Metwally, E. M. Elabbasy, A. A. Eshtiba, Dynamics of a Non-Autonomous Difference Equation, Int. J. Mod. Sci. Engin. Tech., 4 (2017), 11–20
-
[8]
H. El-Metwally, E. A. Grove, G. Ladas, A global convergence result with applications to periodic solutions, J. Math. Anal. Appl., 245 (2000), 161–170
-
[9]
H. El-Metwally, E. A. Grove, G. Ladas, H. D. Voulov, On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl., 7 (2001), 837–850
-
[10]
H. El-Metwally, M. A. Sohaly, I. M. Elbaz, Stochastic global exponential stability of disease-free equilibrium of HIV/AIDS model, Eur. Phys. J. Plus, 135 (2020), 14 Pages
-
[11]
H. El-Metwally, ˙I. Yalc¸ınkaya, C. C¸ inar, On the Dynamics of a Recursive Sequence, Electron. J. Math. Anal. Appl., 5 (2017), 196–201
-
[12]
J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, New York (1983)
-
[13]
M. Y. Hamada, T. El-Azab, H. El-Metwally, Bifurcations analysis of a two-dimensional discrete time predator-prey model, Math. Methods Appl. Sci., 46 (2023), 4815–4833
-
[14]
A. Q. Khan, H. El-Metwally, Global Dynamics, Boundedness, and Semicycle Analysis of a Difference Equation, Discrete Dyn. Nat. Soc., 2021 (2021), 10 pages
-
[15]
V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers Group, Dordrecht (1993)
-
[16]
M. R. S. Kulenovic, G. Ladas, Dynamics of second order rational difference equations: with open problems and conjectures, Chapman and Hall, CRC Press, (2001)
-
[17]
M. R. S. Kulenovic, G. Ladas, W. S. Sizer, On the recursive sequence xn+1 = (xn + xn-1)=( xn + xn-1), Sci. Res. Hot-Line, 2 (1998), 1–16
-
[18]
J. Leech, The rational cuboid revisited, Amer. Math. Monthly, 84 (1977), 518–533
-
[19]
X. Li, Global behavior for a fourth-order rational difference equation, J. Math. Anal. Appl., 312 (2005), 555–563
-
[20]
X. Li, D. Zhu, Global asymptotic stability for two recursive difference equations, Appl. Math. Comput., 150 (2004), 481–492
-
[21]
E. Liz, On explicit conditions for the asymptotic stability of linear higher order difference equations, J. Math. Anal. Appl., 303 (2005), 492–498
-
[22]
S. M. S. Rana, Bifurcations and chaos control in a discrete-time predator-prey system of Leslie type, J. Appl. Anal. Comput., 9 (2019), 31–44
-
[23]
D. Simsek, C. Cinar, I. Yalcinkaya, On the recursive sequence xn+1 = xn-3 1+xn-1, Int. J. Contemp. Math. Sci., 1 (2006), 475–480
-
[24]
˙I. Yalc¸inkaya, C. C¸ inar, On the dynamics of the difference equation xn+1 = axn-k b+cxp n, Fasc. Math., 42 (2009), 141–148
-
[25]
X. Yang, W. Su, B. Chen, G. M. Megson, D. J. Evans, On the recursive sequence xn = axn-1+bxn-2 c+dxn-1xn-2, Appl. Math. Comput., 162 (2005), 1485–1497
-
[26]
L. Zhao, Dynamic analysis and chaos control of Bertrand triopoly based on differentiated products and heterogeneous expectations, Discrete Dyn. Nat. Soc., 2020 (2020), 17 pages
-
[27]
M. Zhao, C. Li, J. Wang, Complex dynamic behaviors of a discrete-time predatorprey system, J. Appl. Anal. Comput., 7 (2017), 478–500