Haar wavelet based numerical technique for the solutions of fractional advection diffusion equations
Authors
Sh. Ahmed
- Department of Mathematics, Central University of Haryana, Mahendergarh-123029, India.
Sh. Jahan
- Department of Mathematics, Central University of Haryana, Mahendergarh-123029, India.
K. S. Nisar
- Department of Mathematics, College of Sciences and Humanities in Alkharj, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
- Saveetha School of Engineering, SIMATS, Chennai, India.
Abstract
In this article, a new numerical technique based on Haar wavelet is introduced to solve the time fractional advection diffusion equations (TFADEs). First we have constructed a generalized operational matrix of fractional order integration using Haar wavelet without taking block pulse functions into account. The fractional derivative in these problems is in the Caputo sense. In the proposed technique, the
unknown function is approximated by truncated Haar wavelet series. The efficiency of the computational approach is examined and validated using particular test problems, and are compared with those of existing methodologies. The numerical results show that the proposed technique is computationally more efficient and yields high accuracy over those methodologies. The behaviour of solutions of fractional order \(\alpha\) and their graphical representation is shown by using MATLAB (R2022a) at various values.
Share and Cite
ISRP Style
Sh. Ahmed, Sh. Jahan, K. S. Nisar, Haar wavelet based numerical technique for the solutions of fractional advection diffusion equations, Journal of Mathematics and Computer Science, 34 (2024), no. 3, 217--233
AMA Style
Ahmed Sh., Jahan Sh., Nisar K. S., Haar wavelet based numerical technique for the solutions of fractional advection diffusion equations. J Math Comput SCI-JM. (2024); 34(3):217--233
Chicago/Turabian Style
Ahmed, Sh., Jahan, Sh., Nisar, K. S.. "Haar wavelet based numerical technique for the solutions of fractional advection diffusion equations." Journal of Mathematics and Computer Science, 34, no. 3 (2024): 217--233
Keywords
- Advection diffusion equation
- fractional calculus
- Haar wavelet
- multi-resolution analysis
- error analysis
MSC
- 35Q79
- 65N35
- 42C40
- 26A33
- 35R11
References
-
[1]
A. Abbas, A. Khan, T. Abdeljawad, M. Aslam, Numerical simulation of variable density and magnetohydrodynamics effects on heat generating and dissipating Williamson Sakiadis flow in a porous space: Impact of solar radiation and Joule heating, Heliyon, 9 (2023), 16 pages
-
[2]
L. Adibmanesha, J. Rashidiniab, Sinc and B-Spline scaling functions for time fractional convection-diffusion equations, J. King Saud Univ.-Sci., 33 (2021), 9 pages
-
[3]
M. G. S. AL-Safi, L. Z. Hummady, Approximate Solution for advection dispersion equation of time Fractional order by using the Chebyshev wavelets-Galerkin Method, Iraqi J. Sci., 58 (2017), 1493–1502
-
[4]
R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210
-
[5]
M. Caputo, Linear models of dissipation whose Q is almost frequency independent. II, Fract. Calc. Appl. Anal., 11 (2008), 4–14
-
[6]
A. Chang, H. Su, C. Zheng, B. Lu, C. Lu, R. Ma, Y. Zhang, A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs, Phys. A, 502 (2018), 356–369
-
[7]
C. F. Chen, C. H. Hsiao, Haar wavelet method for solving lumped and distributed parameter systems, IEE Proc.-Control Theory Appl., 144 (1997), 87–94
-
[8]
Y. Chen, Y. Wu, Y. Cui, Z. Wang, D. Jin, Wavelet method for a class of fractional convection diffusion equation with variable coefficients, J. Comput. Sci., 1 (2010), 146–149
-
[9]
M. Dehghan, S. A. Yousefi, A. Lotfi, The use of He’s variational iteration method for solving the telegraph and fractional telegraph equations, Int. J. Numer. Methods Biomed. Eng., 27 (2011), 219–231
-
[10]
M. Faheem, A. Khan, A. Raza, A high resolution Hermite wavelet technique for solving space-time-fractional partial differential equations, Math. Comput. Simulation, 194 (2022), 588–609
-
[11]
M. M. Izadkhah, J. Saberi-Nadjafi, Gegenbauer spectral method for time fractional convection-diffusion equations with variable coefficients, Math. Methods Appl. Sci., 38 (2015), 3183–3194
-
[12]
K. Jothimani, N. Valliammal, S. Alsaeed, K. S. Nisar, C. Ravichandran, Controllability results of Hilfer fractional derivative through integral contractors, Qual. Theory Dyn. Syst., 22 (2023), 17 pages
-
[13]
Kamran, M. Irfan, F. M. Alotaibi, S. Haque, N. Mlaiki, K. Shah, RBF-based local meshless method for fractional diffusion equations, Fractal Fract., 7 (2023), 1–21
-
[14]
Kamran, R. Kamal, G. Rahmat, K. Shah, On the Numerical Approximation of Three-Dimensional Time Fractional Convection-Diffusion Equations, Math. Probl. Eng., 2021 (2021), 16 pages
-
[15]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2004)
-
[16]
S. Khosro, J. T. Machado, I. Masti, Analysis of dual Bernstein operators in the solution of the fractional convectiondiffusion equation arising in underground water pollution, J. Comput. Appl. Math., 399 (2022), 18 pages
-
[17]
U. Lepik, H. Hein, Fractional calculus, In: Haar Wavelets, Mathematical Engineering, Springer, Cham, (2014), 107–122
-
[18]
Y. Li, W. Zhao, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216 (2010), 2276–2285
-
[19]
S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell., 11 (1989), 674–693
-
[20]
K. Munusamy, C. Ravichandran, K. S. Nisar, R. Jagatheeshwari, N. Valliammal, Results on neutral integrodifferential system using Krasnoselskii-Schaefer theorem with initial conditions, AIP Conf. Proc., 2718 (2023),
-
[21]
D. A. Murio, Implicit finite difference approximation for time fractional diffusion equations, Comput. Math. Appl., 56 (2008), 1138–1145
-
[22]
K. S. Nisar, S. Alsaeed, K. Kaliraj, C. Ravichandran, W. Albalawi, A.-H. Abdel-Aty, Existence criteria for fractional differential equations using the topological degree method, AIMS Math., 8 (2023), 21914–21928
-
[23]
K. S. Nisar, R. Jagatheeshwari, C. Ravichandran, P. Veeresha, High performance computational method for fractional model of solid tumour invasion, Ain Shams Eng. J., 14 (2023), 1–11
-
[24]
Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21 (2008), 194–199
-
[25]
C. Ravichandran, K. Logeswari, A. Khan, T. Abdeljawad, J. F. G´omez-Aguilar, An epidemiological model for computer virus with Atangana-Baleanu fractional derivative, Results Phys., 51 (2023), 1–8
-
[26]
C. Ravichandran, K. Munusamy, K. S. Nisar, N. Valliammal, Results on neutral partial integrodifferential equations using Monch-Krasnosel’Skii fixed point theorem with nonlocal conditions, Fractal Fract., 6 (2022), 1–12
-
[27]
D. A. Robinson, The use of control systems analysis in the neurophysiology of eye movements, Annu. Rev. Neurosci., 4 (1981), 463–503
-
[28]
A. Saadatmandi, M. Dehghan, M.-R. Azizi, The sinc-Legendre collocation method for a class of fractional convectiondiffusion equations with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4125–4136
-
[29]
R. Saadeh, Numerical solutions of fractional convection-diffusion equation using finite difference and finite volume schemes, J. Math. Comput. Sci., 11 (2021), 7872–7891
-
[30]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon (1993)
-
[31]
V. Saw, S. Kumar, The Chebyshev collocation method for a class of time fractional convection-diffusion equation with variable coefficients, Math. Methods Appl. Sci., 44 (2021), 6666–6678
-
[32]
F. A. Shah, R. Abass, L. Debnath, Numerical solution of fractional differential equations using Haar wavelet operational matrix method, Int. J. Appl. Comput. Math., 3 (2017), 2423–2445
-
[33]
K. Shah, R. Amin, T. Abdeljawad, Utilization of Haar wavelet collocation technique for fractal-fractional order problem, Heliyon, 9 (2023), 1–9
-
[34]
K. Shah, R. Amin, G. Ali, N. Mlaiki, T. Abdeljawad, Algorithm for the solution of nonlinear variable-order pantograph fractional integro-differential equations using haar method, Fractals, 30 (2022),
-
[35]
F. A. Shah, Kamran, W. Boulila, A. Koubaa, N. Mlaiki, Numerical Solution of Advection-Diffusion Equation of Fractional Order Using Chebyshev Collocation Method, Fractal Fract., 7 (2023), 1–20
-
[36]
L. Su, W. Wang, Q. Xu, Finite difference methods for fractional dispersion equations, Appl. Math. Comput., 216 (2010), 3329–3334
-
[37]
A. Umer, M. Abbas, M. Shafiq, F. A. Abdullah, M. De la Sen, T. Abdeljawad, Numerical solutions of Atangana- Baleanu time-fractional advection diffusion equation via an extended cubic B-spline technique, Alex. Eng. J., 74 (2023), 285–300
-
[38]
K. Wang, Exact Traveling Wave Solutions for the Local Fractional Kadomtsov-Petviashvili-Benjamin-Bona-Mahony Model by Variational Perspective, Fractals, 30 (2022), 7 pages
-
[39]
K. Wang, Solitary wave dynamics of the local fractional Bogoyavlensky-Konopelchenko model, Fractals, 31 (2023), 9 pages
-
[40]
K.-L. Wang, New solitary wave solutions of the fractional modified kdv?kadomtsev?petviashvili equation, Fractals, 31 (2023), 12 pages
-
[41]
J. Xie, Numerical computation of fractional partial differential equations with variable coefficients utilizing the modified fractional Legendre wavelets and error analysis, Math. Methods Appl. Sci., 44 (2021), 7150–7164
-
[42]
J. Xie, Q. Huang, X. Yang, Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix, SpringerPlus, 5 (2016), 1–16
-
[43]
Q. Xu, J. S. Hesthaven, Discontinuous Galerkin method for fractional convection-diffusion equations, SIAM J. Math. Anal., 52 (2014), 405–423
-
[44]
L. Zada, I. Aziz, Numerical solution of fractional partial differential equations via Haar wavelet, Numer. Methods Partial Differential Equations, 38 (2022), 222–242
-
[45]
H. Zhang, F. Liu, P. Zhuang, I. Turner, V. Anh, Numerical analysis of a new space time variable fractional order advection dispersion equation, Appl. Math. Comput., 242 (2014), 541–550
-
[46]
J. Zhou, X. Yao, W. Wang, Two-grid finite element methods for nonlinear time-fractional parabolic equations, Numer. Algorithms, 90 (2022), 709–730