Derivative free Newton-type method for fuzzy nonlinear equations
Volume 34, Issue 3, pp 234--242
https://dx.doi.org/10.22436/jmcs.034.03.03
Publication Date: March 18, 2024
Submission Date: December 30, 2023
Revision Date: January 15, 2024
Accteptance Date: February 02, 2024
Authors
M. A. Aal
- Department of Basic Sciences, Faculty of Arts and Educational Sciences, Middle East University, Amman 11831, Jordan.
Abstract
One of the effective techniques for nonlinear equation is the Newton algorithm. In the event that the system's nonsingular Jacobian is found close to the solution, this method's convergence is guaranteed, and its rate is quadratic. Any deviation from this specified condition, such as the presence of a singular Jacobian, would, however, lead to an inadequate convergence or possibly the loss of convergence. This study constructs a derivative quasi-Newton method for large-scale nonlinear equation systems, particularly, when the system contains fuzzy coefficient rather that crisp coefficient. This modification is based on a recent method available in literature. The convergence result of the proposed method has been discussed under suitable assumptions. Preliminary obtained results show that the new algorithm is computationally much faster and promising. An interesting feature of the proposed scheme is that despite the fact that the Jacobian matrix is singular in the neighborhood of the solution, the new algorithm was still able to converge to the solution point.
Share and Cite
ISRP Style
M. A. Aal, Derivative free Newton-type method for fuzzy nonlinear equations, Journal of Mathematics and Computer Science, 34 (2024), no. 3, 234--242
AMA Style
Aal M. A., Derivative free Newton-type method for fuzzy nonlinear equations. J Math Comput SCI-JM. (2024); 34(3):234--242
Chicago/Turabian Style
Aal, M. A.. "Derivative free Newton-type method for fuzzy nonlinear equations." Journal of Mathematics and Computer Science, 34, no. 3 (2024): 234--242
Keywords
- Nonlinear equations
- fuzzy
- Jacobian
- inverse Jacobian.
MSC
References
-
[1]
S. Abbasbandy, B. Asady, Newton’s method for solving fuzzy nonlinear equations, Appl. Math. Comput., 159 (2004), 349–356
-
[2]
S. Abbasbandy, A. Jafarian, Steepest descent method for solving fuzzy nonlinear equations, Appl. Math. Comput., 174 (2006), 669–675
-
[3]
N. Aini, M. Mamat, M. Rivaie, I. M. Sulaiman, A hybrid of quasi-newton method with CG method for unconstrained optimization, J. Phys.: Conf. Ser., 1366 (2019), 1–10
-
[4]
A. M. Awwal, P. Kumam, K. Sitthithakerngkiet, A. M. Bakoji, A. S. Halilu, I. M. Sulaiman, Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application, AIMS Math., 6 (2021), 8792–8814
-
[5]
J. J. Buckley, Y. Qu, Solving linear and quadratic fuzzy equations, Fuzzy sets and systems, 38 (1990), 43–59
-
[6]
J. J. Buckley, Y. X. Qu, Solving fuzzy equations: a new solution concept, Fuzzy Sets and Systems, 39 (1991), 291–301
-
[7]
J. E. Dennis, Jr., R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1996)
-
[8]
D. J. Dubois, Fuzzy sets and systems: theory and applications, Academic Press, New York (1980)
-
[9]
D. Dubois, H. Prade, Operations on fuzzy numbers, Internat. J. Systems Sci., 9 (1978), 613–626
-
[10]
J.-X. Fang, On nonlinear equations for fuzzy mappings in probabilistic normed spaces, Fuzzy Sets and Systems, 131 (2002), 357–364
-
[11]
R. Goetschel, Jr., W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31–43
-
[12]
S. M. Ibrahim, M. Mamat, M. Y. Waziri, N. S. A. Hamzah, Barzilai-borwein gradient method for solving fuzzy nonlinear equations, Int. J. Eng. Technol., 7 (2018), 80–83
-
[13]
M. Kajani, B. Asady, A. H. Vencheh, An iterative method for solving dual fuzzy nonlinear equations, Appl. Math. Comput., 167 (2005), 316–323
-
[14]
K. Kamfa, S. Ibrahim, S. F. Sufahani, R. B. Yunus, M. Mamat, A modified BFGS method via new rational approximation model for solving unconstrained optimization problems and its application, Adv. Math.: Sci. J., 9 (2020), 10771–10786
-
[15]
M. Malik, M. Mamat, S. S. Abas, I. M. Sulaiman, Sukono, A new spectral conjugate gradient method with descent condition and global convergence property for unconstrained optimization, J. Math. Comput. Sci., 10 (2020), 2053–2069
-
[16]
M. Mizumoto, K. Tanaka, The four operations of arithmetic on fuzzy numbers, Systems-Comput.-Controls, 7 (1976), 73–81
-
[17]
U. A. Omesa, I. M. Sulaiman, W. M. Yusuf, B. A. Hassan, A. U. Moyi, A. Abdul-Rahman, M. Mamat, An efficient hybrid conjugate gradient algorithm for solving intuitionistic fuzzy nonlinear equations, Sci. J. King Faisal Univ., 24 (2023), 8–13
-
[18]
A. Ramli, M. L. Abdullah, M. Mamat, Broyden’s method for solving fuzzy nonlinear equations, Adv. Fuzzy Syst., 2010 (2010), 6 pages
-
[19]
N. Salihu, P. Kumam, A. M. Awwal, I. M. Sulaiman, T. Seangwattana, The global convergence of spectral RMIL conjugate gradient method for unconstrained optimization with applications to robotic model and image recovery, PLOS One, 18 (2023), 1–19
-
[20]
J. Shokri, On systems of fuzzy nonlinear equations, Appl. Math. Sci. (Ruse), 2 (2008), 1205–1217
-
[21]
E. M. Sparrow, E. R. G. Eckert, Nonlinear problems of combined conductive-radiative heat transfer, Academic Press, New York-London (1964)
-
[22]
I. M. Sulaiman, M. Malik, A. M. Awwal, P. Kumam, M. Mamat, S. Al-Ahmad, On three-term conjugate gradient method for optimization problems with applications on COVID-19 model and robotic motion control, Adv. Contin. Discrete Models, 2022 (2022), 22 pages
-
[23]
I. M. Sulaiman, M. Mamat, P. L. Ghazali, Shamanskii method for solving parameterized fuzzy nonlinear equations, Int. J. Optim. Control. Theor. Appl. IJOCTA, 11 (2021), 24–29
-
[24]
I. M. Sulaiman, M. Mamat, P. L. Ghazali, H. M. Foziah, K. Kamfa, B. Pinontoan, A. J. Rindengan, An improved shamanskii method for solving nonlinear equation, J. Adv. Res. Dyn. Control Syst., 12 (2020), 591–594
-
[25]
I. M. Sulaiman, M. Mamat, M. Malik, K. S. Nisar, A. Elfasakhany, Performance analysis of a modified newton method for parameterized dual fuzzy nonlinear equations and its application, Results Phys., 33 (2022), 7 pages
-
[26]
I. M. Sulaiman, M. Mamat, M. Y. Waziri, A. Fadhilah, K. U. Kamfa, Regula falsi method for solving fuzzy nonlinear equation, Far East J. Appl. Math., 100 (2016), 873–884
-
[27]
I. M. Sulaiman, M. Mamat, N. Zamri, P. L. Ghazali, Solving dual fuzzy nonlinear equations via shamanskii method, Int. J. Eng. Res., 7 (2018), 89–91
-
[28]
I. M. Sulaiman, Sukono, S. Supian, M. Mamat, New class of hybrid conjugate gradient coefficients with guaranteed descent and efficient line search, IOP Conf. Ser.: Mater. Sci. Eng., 621 (2019), 7 pages
-
[29]
A. O. Umar, I. M. Sulaiman, M. Mamat, M. Y. Waziri, N. Zamri, On damping parameters of levenberg marquardt algorithm for nonlinear least square problems, J. Phys.: Conf. Ser., 1734 (2021), 9 pages
-
[30]
M. Y. Waziri, A. U. Moyi, An alternative approach for solving dual fuzzy nonlinear equations, Int. J. Fuzzy Syst., 18 (2016), 103–107
-
[31]
U. A. Yakubu, I. M. Sulaiman, M. Mamat, P. L. Ghazali, K. Khalid, The global convergence properties of a descent conjugate gradient method, J. Adv. Res. Dyn. Control Syst., 12 (2020), 1011–1016
-
[32]
L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338–353