Introducing \(\Delta_h\) Hermite-based Appell polynomials via the monomiality principle: properties, forms, and generating relations
Authors
W. Ramirez
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Rome, Italy.
- Department of Natural and Exact Sciences, Universidad de la Costa, Calle 58 N 55-66, 080002 Barranquilla, Colombia.
J. Nisar
- Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India.
A. Warke
- Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India.
J. G. Dar
- Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India.
Z. A. Rather
- Department of Mathematical Sciences, Islamic University of Science and Technology, Awantipora Kashmir-192122, India.
Abstract
The article introduces a novel class of polynomials, \({}{_\mathcal{H}}\mathcal{Q}^{[{\Delta _h}]}_m(q_1,q_2,q_3,q_4,q_5;h)\), termed \(\Delta_h\) Hermite-based Appell polynomials, utilizing the monomiality principle. These polynomials exhibit close connections with \(\Delta_h\) Hermite-based Bernoulli, Euler, and Genocchi polynomials, elucidating their specific properties and explicit forms. Moreover, the research establishes generating relations for these polynomials, facilitating profound insights applicable across diverse domains such as mathematics, physics, and engineering sciences.
Share and Cite
ISRP Style
W. Ramirez, J. Nisar, A. Warke, J. G. Dar, Z. A. Rather, Introducing \(\Delta_h\) Hermite-based Appell polynomials via the monomiality principle: properties, forms, and generating relations, Journal of Mathematics and Computer Science, 35 (2024), no. 1, 96--108
AMA Style
Ramirez W., Nisar J., Warke A., Dar J. G., Rather Z. A., Introducing \(\Delta_h\) Hermite-based Appell polynomials via the monomiality principle: properties, forms, and generating relations. J Math Comput SCI-JM. (2024); 35(1):96--108
Chicago/Turabian Style
Ramirez, W., Nisar, J., Warke, A., Dar, J. G., Rather, Z. A.. "Introducing \(\Delta_h\) Hermite-based Appell polynomials via the monomiality principle: properties, forms, and generating relations." Journal of Mathematics and Computer Science, 35, no. 1 (2024): 96--108
Keywords
- \({\Delta}_h\) hybrid special polynomials
- Appell polynomials
- monomiality principle
MSC
References
-
[1]
L. C. Andrews, Special functions for engineers and applied mathematicians, Macmillan Co., New York (1985)
-
[2]
P. Appell, Sur une classe de polyn ˆ omes, Ann. Sci. ´ Ecole. Norm. Sup., 9 (1880), 119–144
-
[3]
P. Appell, J. Kamp´e de F´eriet, Fonctions Hyperg´eom´etriques et Hypersph´eriques: Polyn ˆ omes d’Hermite, Gauthier- Villars, Paris (1926)
-
[4]
S. Araci, W. A. Khan, M. Acikgoz, C. O¨ zel, P. Kumam, A new generalization of Apostol type Hermite–Genocchi polynomials and its applications, SpringerPlus, 5 (2016), 1–17
-
[5]
S. Araci, M. Riyasat, S. A. Wani, S. Khan, Differential and integral equations for the 3-variable Hermite-Frobenius-Euler and Frobenius-Genocchi polynomials, Appl. Math. Inf. Sci., 11 (2017), 1335–1346
-
[6]
D. Bedoya, M. Ortega, W. Ram´ırez, A. Urieles, New biparametric families of Apostol-Frobenius-Euler polynomials of level m, Mat. Stud., 55 (2021), 10–23
-
[7]
G. Bretti, C. Cesarano, P. E. Ricci, Laguerre-type exponentials and generalized Appell polynomials, Comput. Math. Appl., 48 (2004), 833–839
-
[8]
L. Carlitz, Eulerian numbers and polynomials, Math. Mag., 32 (1958/59), 247–260
-
[9]
F. A. Costabile, E. Longo, h-Appell sequences and related interpolation problem, Numer. Algorithms, 63 (2013), 165–186
-
[10]
G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, In: Advanced Special functions and applications, (Melfi, 1999), Proc. Melfi Sch. Adv. Top. Math. Phys., 1 (2000), 147–164
-
[11]
M. Hermite, Sur un nouveau d´evelopment en s´eries de functions, Imprimerie de Gauthier-Villars, (1864)
-
[12]
C. Jordan, Calculus of finite differences, Chelsea Publishing Co., New York (1965)
-
[13]
W. A. Khan, M. S. Alatawi, U. Duran, Applications and Properties for Bivariate Bell-Based Frobenius-Type Eulerian Polynomials, J. Funct. Spaces, 2023 (2023), 10 pages
-
[14]
W. A. Khan, U. Duran, J. Younis, C. S. Ryoo, On some extensions for degenerate Frobenius-Euler-Genocchi polynomials with applications in computer modeling, Appl. Math. Sci. Eng., 32 (2024), 24 pages
-
[15]
W. A. Khan, M. Kamarujjama, A note on type 2 poly-Bernoulli polynomials of the second kind, Palest. J. Mat., 12 (2023), 74–84
-
[16]
W. A. Khan, A. Muhyi, R. Ali, K. A. H. Alzobydi, M. Singh, P. Agarwal, A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties, AIMS Math., 6 (2011), 12680–12697
-
[17]
S. Khan, S. A. Wani, A note on differential and integral equations for the Legendre-Hermite polynomials, Int. J. Adv. Res. Sci. Eng., 7 (2018), 514–520
-
[18]
M. Nadeem, W. A. Khan, K. A. H. Alzobydi, C. S. Ryoo, M. Shadab, R. Ali, CERTAIN PROPERTIES ON BELLBASED APOSTOL-TYPE FROBENIUS-GENOCCHI POLYNOMIALS AND ITS APPLICATIONS, Adv. Math. Models Appl., 8 (2023), 92–107
-
[19]
M. A. O¨ zarslan, B. Y. Yas¸a, h-Gould-Hopper Appell polynomials, Acta Math. Sci. Ser. B (Engl. Ed.), 41 (2021), 1196–1222
-
[20]
W. Ram´ırez, C. Cesarano, Some new classes of degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol- Genocchi polynomials, Carpathian Math. Publ., 14 (2022), 354–363
-
[21]
M. Riyasat, S. A. Wani, S. Khan, On some classes of differential equations and associated integral equations for the Laguerre-Appell polynomials, Adv. Pure Appl. Math., 9 (2018), 185–194
-
[22]
M. Riyasat, S. A. Wani, S. Khan, Differential and integral equations associated with some hybrid families of Legendre polynomials, Tbilisi Math. J., 11 (2018), 127–139
-
[23]
S. Roshan, H. Jafari, D. Baleanu, Solving FDEs with Caputo-Fabrizio derivative by operational matrix based on Genocchi polynomials, Math. Methods Appl. Sci., 41 (2018), 9134–9141
-
[24]
J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta. Math., 73 (1941), 333–366
-
[25]
S. A. Wani, Two-iterated degenerate Appell polynomials: properties and applications, Arab J. Basic Appl. Sci., 31 (2024), 83–92
-
[26]
S. A. Wani, K. Abuasbeh, G. I. Oros, S. Trabelsi, Studies on special polynomials involving degenerate Appell polynomials and fractional derivative, Symmetry, 15 (2023), 1–12
-
[27]
S. A. Wani, S. Khan, Properties and applications of the Gould-Hopper-Frobenius-Euler polynomials, Tbilisi Math. J., 12 (2019), 93–104
-
[28]
S. A. Wani, S. Khan, S. A. Naikoo, Differential and integral equations for the Laguerre-Gould-Hopper-based Appell and related polynomials, Bol. Soc. Mat. Mex. (3), 26 (2020), 617–646
-
[29]
M. Zayed, S. A. Wani, A Study on Generalized Degenerate Form of 2D Appell Polynomials via Fractional Operators, Fractal Fract., 7 (2023), 1–14
-
[30]
M. Zayed, S. A. Wani, Y. Quintana, Properties of Multivariate Hermite Polynomials in Correlation with Frobenius–Euler Polynomials, Mathematics, 11 (2023), 1–17