Various generalizations of uncertainty principles related to the linear canonical ambiguity function
Authors
M. Bahri
- Department of Mathematics, Hasanuddin University, Makassar 90245, Indonesia.
N. Bachtiar
- Department of Mathematics, Hasanuddin University, Makassar 90245, Indonesia.
A. K. Amir
- Department of Mathematics, Hasanuddin University, Makassar 90245, Indonesia.
S. N. Busrah
- Department of Mathematics, Hasanuddin University, Makassar 90245, Indonesia.
Abstract
The uncertainty principle is a fundamental result of the Fourier transform and is currently one of the most rapidly developing areas of mathematics due to its application in various transformations. This paper deals with the linear canonical ambiguity function. It combines the classical ambiguity function and the linear canonical transform. We derive in detail various uncertainty principles related to the proposed transformation.
Share and Cite
ISRP Style
M. Bahri, N. Bachtiar, A. K. Amir, S. N. Busrah, Various generalizations of uncertainty principles related to the linear canonical ambiguity function, Journal of Mathematics and Computer Science, 35 (2024), no. 3, 256--269
AMA Style
Bahri M., Bachtiar N., Amir A. K., Busrah S. N., Various generalizations of uncertainty principles related to the linear canonical ambiguity function. J Math Comput SCI-JM. (2024); 35(3):256--269
Chicago/Turabian Style
Bahri, M., Bachtiar, N., Amir, A. K., Busrah, S. N.. "Various generalizations of uncertainty principles related to the linear canonical ambiguity function." Journal of Mathematics and Computer Science, 35, no. 3 (2024): 256--269
Keywords
- Linear canonical ambiguity function
- uncertainty principle
- Pitt's inequality
- Matolcsi-Szücs inequality
MSC
References
-
[1]
M. Bahri, Windowed linear canonical transform: its relation to windowed Fourier transform and uncertainty principles, J. Inequal. Appl., 2022 (2022), 17 pages
-
[2]
M. Bahri, R. Ashino, Convolution and correlation theorem for Wigner-Ville distribution associated with linear canonical transform, In: 2015 12th International Conference on Information Technology - New Generations, IEEE, (2015), 341–346
-
[3]
M. Bahri, A. Haddade, S. Toaha, Some useful properties of ambiguity function assosiated with linear canonical transform, Far East J. Electron. Commun., 17 (2017), 455–473
-
[4]
R.-F. Bai, B.-Z. Li, Q.-Y. Cheng, Wigner-Ville distribution associated with the linear canonical transform, J. Appl. Math., 2012 (2012), 14 pages
-
[5]
M. Y. Bhat, I. M. Almanjahie, A. H. Dar, J. G. Dar, Wigner-Ville distribution and ambiguity function associated with the quaternion offset linear canonical transform, Demonstr. Math., 55 (2022), 786–797
-
[6]
M. Y. Bhat, A. H. Dar, k-ambiguity function in the framework of offset linear canonical transform, Int. J. Wavelets Multiresolut. Inf. Process., 21 (2023), 21 pages
-
[7]
R. Bracewell, The Fourier transform and its applications, McGraw-Hill, New York (1986)
-
[8]
T.-W. Che, B.-Z. Li, T.-Z. Xu, The ambiguity function associated with the linear canonical transform, EURASIP J. Adv. Signal Process., 138 (2012), 1–14
-
[9]
S. A. Collins, Lens-system diffraction integral written in term of matrix optics, J. Opt. Soc. Am., 60 (1970), 1168–1177
-
[10]
A. H. Dar, M. Y. Bhat, Scaled ambiguity function and scaled Wigner distribution for LCT signals, Optik, 267 (2022),
-
[11]
A. H. Dar, M. Y. Bhat, Donoho-Stark’s and Hardy’s uncertainty principles for the short-time quaternion offset linear canonical transform, Filomat, 37 (2023), 4467–4480
-
[12]
L. Debnath, Wavelet transforms and their applications, Birkh¨auser Boston, Boston (2002)
-
[13]
M. El Kassimi, Y. El Haoui, S. Fahlaou, The Wigner-Ville distribution associated with the quaternion offset linear canonical transform, Anal. Math., 45 (2019), 787–802
-
[14]
Q. Feng, B.-Z. Li, Convolution and correlation theorems for the two dimensional linear canonical transform and its applications, IET Signal Process., 10 (2016), 125–132
-
[15]
K. Gr¨ochenig, Foundation of time-frequency analysis, Birkh¨auser Boston, Boston (2001)
-
[16]
K. Hleili, Windowed linear canonical transform and its applications to the time-frequency analysis, J. Pseudo-Differ. Oper. Appl., 13 (2022), 26 pages
-
[17]
Y.-G. Li, B.-Z. Li, H.-F. Sun, Uncertainty principles for Wigner-Ville distribution associated with the linear canonical transforms, Abstr. Appl. Anal., 2014 (2014), 9 pages
-
[18]
M. Moshinsky, C. Quesnee, Linear canonical transform and their unitary representations, J. Math. Phys., 12 (1971), 1772–1780
-
[19]
S.-C. Pei, J.-J. Ding, Eigenfunctions of linear canonical transform, IEEE Trans. Signal Process., 50 (2002), 11–26
-
[20]
J. Shi, Q. Liu, L. He, Sampling and reconstruction in arbitrary measurement and approximation spaces associated with the linear canonical transform, IEEE Trans. Signal Process., 64 (2016), 6379–6391
-
[21]
Y.-E. Song, X.-Y. Zhang, C.-H. Shang, H.-X. Bu, X.-Y. Wang, The Wigner-Ville distribution based on the linear canonical transform and its applications for QFM signal parameters estimation, J. Appl. Math., 2014 (2014), 8 pages
-
[22]
D.Wei, Q. Ran, Y. Li, A convolution and correlation theorem for the linear canonical transform and its application, Circuits Systems Signal Process., 31 (2012), 301–312
-
[23]
D. Wei, Q. Ran, Y. Li, New convolution theorem for the linear canonical transform and its translation invariance property, Optik, 123 (2012), 1478–1481
-
[24]
J. Zhao, R. Tao, Y.-L. Li, Y. Wang, Uncertainty principles for linear canonical transforms, IEEE Trans. Signal Process., 57 (2009), 2856–2858