Mathematical analysis of fractional order co-abuse infection model using power law type kernel
Authors
I. U. Haq
- Department of Basic Sciences, University of Engineering and Technology, Khyber Pukhtunkhwa, Anbar, Pakistan.
A. Ali
- Department of Basic Sciences, University of Engineering and Technology, Khyber Pukhtunkhwa, Baghdad, Pakistan.
A. Ullah
- Department of Mathematics, University of Malakand, Haldia, 721657, W.B., Chakdara, Dir(L),18000, KPK, Pakistan.
K. Shah
- Department of Mathematics, University of Malakand, P.O. Box 66833, Chakdara, Dir(L),18000, KPK, Pakistan.
- Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia.
Th. Abdeljawad
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
Abstract
In this study, we present a mathematical model designed to illustrate the simultaneous occurrence of smoking and heroin co-abuse infections. To explore non-negative solutions and identify a stable equilibrium point, as well as the fundamental reproductive number, we enhance the model by integrating Caputo fractional-order (FO) derivative operators. Employing functional analysis concepts, we derive several results pertaining to the existence of a unique solution. Additionally, we utilize the Ulam-Hyres (UH) notion to establish the stability of the model solutions. To offer further insights, we present numerical results for the fractional-order system using an Euler-type numerical technique. These results are visually represented in graphs, illustrating the diverse responses of the model under different parameter values.
Share and Cite
ISRP Style
I. U. Haq, A. Ali, A. Ullah, K. Shah, Th. Abdeljawad, Mathematical analysis of fractional order co-abuse infection model using power law type kernel, Journal of Mathematics and Computer Science, 36 (2025), no. 4, 352--370
AMA Style
Haq I. U., Ali A., Ullah A., Shah K., Abdeljawad Th., Mathematical analysis of fractional order co-abuse infection model using power law type kernel. J Math Comput SCI-JM. (2025); 36(4):352--370
Chicago/Turabian Style
Haq, I. U., Ali, A., Ullah, A., Shah, K., Abdeljawad, Th.. "Mathematical analysis of fractional order co-abuse infection model using power law type kernel." Journal of Mathematics and Computer Science, 36, no. 4 (2025): 352--370
Keywords
- Caputo operator
- existence theoory
- numerical techniques
- unique solution
MSC
References
-
[1]
X. Abdurahman, L. Zhang, Z. Teng, Global dynamics of a discretized heroin epidemic model with time delay, Abstr. Appl. Anal., 2014 (2014), 10 pages
-
[2]
R. P. Agarwal, A. M. A. El-Sayed, S. M. Salman, Fractional-order Chua’s system: discretization, bifurcation and chaos, Adv. Differ. Equ., 2013 (2013), 13 pages
-
[3]
Z. Ahmad, F. Ali, A. M. Alqahtani, N. Khan, I. Khan, Dynamics of cooperative reactions based on chemical kinetics with reaction speed: A comparative analysis with singular and nonsingular kernels, Fractals, 30 (2022), 22 pages
-
[4]
Z. Ahmad, F. Ali, N. Khan, I. Khan, Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel, Chaos Solitons Fractals, 153 (2021), 20 pages
-
[5]
Z. Ahmad, G. Bonanomi, D. di Serafino, F. Giannino, Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag-Leffler kernel, Appl. Numer. Math., 185 (2023), 446–465
-
[6]
S. Ahmad, M. F. Yassen, M. M. Alam, S. Alkhati, F. Jarad, M. B. Riaz, A numerical study of dengue internal transmission model with fractional piecewise derivative, Results Phys., 39 (2022), 1–9
-
[7]
A. A. Alshareef, H. A. Batarfi, Stability analysis of chain, mild and passive smoking model, Am. J. Comput. Math., 10 (2020), 31–43
-
[8]
C. Castillo-Garsow, G. Jordan-Salivia, A. Rodriguez-Herrera, Mathematical models for the dynamics of tobacco use, recovery and relapse, In: Technical Report Series BU-1505-M, Cornell University, Ithaca, NY, USA (1997)
-
[9]
G. Huang, A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 26 (2013), 687–691
-
[10]
S. Hussain, Tunc¸, G. ur Rahman, H. Khan, E. Nadia, Mathematical analysis of stochastic epidemic model of MERScorona & application of ergodic theory, Math. Comput. Simul., 207 (2023), 130–150
-
[11]
M. M. M. Ihsanjaya, N. Susyanto, Mathematical model of changes in smoking behavior which involves smokers who temporarily and permanently quit smoking, AIP Conf. Proc., 2019 (2019), 1–9
-
[12]
H. Khan, S. Ahmed, J. Alzabut, A. T. Azar, A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy, Chaos Solitons Fractals, 174 (2023), 12 pages
-
[13]
N. Khan, F. Ali, Z. Ahmad, S. Murtaza, A. H. Ganie, I. Khan, S. M. Eldin, A time fractional model of a Maxwell nanofluid through a channel flow with applications in grease, Sci. Rep., 13 (2023), 15 pages
-
[14]
N. Khan, A. Ali, A. Ullah, Z. A. Khan, Mathematical analysis of neurological disorder under fractional order derivative, AIMS Math., 8 (2023), 18846–18865
-
[15]
H. Khan, J. Alzabut, A. Shah, Z. Y. He, S. Etemad, S. Rezapour, A. Zada, On fractal-fractional waterborne disease model: A study on theoretical and numerical aspects of solutions via simulations, Fractals, 31 (2023), 16 pages
-
[16]
M. A. Khan, S. Ullah, S. Kumar, A robust study on 2019-nCOV outbreaks through non-singular derivative, Eur. Phys. J. Plus., 136 (2021), 20 pages
-
[17]
S. Kumar, R. P. Chauhan, S. Momani, S. Hadid, Numerical investigations on COVID-19 model through singular and non-singular fractional operators, Numer. Methods Partial Differ. Equ., 40 (2024), 27 pages
-
[18]
S. Kumar, R. Kumar, C. Cattani, B. Samet, Chaotic behaviour of fractional predator-prey dynamical system, Chaos Solitons Fractals, 135 (2020), 12 pages
-
[19]
S. Kumar, A. Kumar, B. Samet, H. Dutta, A study on fractional host-parasitoid population dynamical model to describe insect species, Numer. Methods Partial Differ. Equ., 37 (2021), 1673–1692
-
[20]
X. Li, R. P. Agarwal, J. F. G´omez-Aguilar, Q. Badshahd, G. ur Rahman, Threshold dynamics: formulation, stability & sensitivity analysis of co-abuse model of heroin and smoking, Chaos Solitons Fractals, 161 (2022), 18 pages
-
[21]
C. Li, F. Zeng, The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34 (2013), 149–179
-
[22]
S. Liu, L. Zhang, X.-B. Zhang, A. Li, Dynamics of a stochastic heroin epidemicmodel with bilinear incidence and varying population size, Int. J. Biomath., 12 (2019),
-
[23]
C. Lucas, J, Martin, Smoking and drug interactions, Aust. Prescr., 36 (2013), 102–104a
-
[24]
S. A. Matintu, Smoking as epidemic: modeling and simulation study, Am. J. Appl. Math., 5 (2017), 31–38
-
[25]
H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 13 pages
-
[26]
S. Murtaza, P. Kumam, T. Sutthibutpong, P. Suttiarporn, T. Srisurat, Z. Ahmad, Fractal-fractional analysis and numerical simulation for the heat transfer of ZnO + Al2O3 + TiO2/DW based ternary hybrid nanofluid, ZAMM - J. Appl. Math. Mech./ZAMM Z. fur Angew. Math., 104 (2024),
-
[27]
I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA (1999)
-
[28]
A. M. Pulecio-Montoya, L. E. Lopez-Monteneqro, L. M. Benavides, Analysis of a mathematical model of smoking, Contemp. Eng. Sci., 12 (2019), 117–129
-
[29]
H. Qu, M. ur Rahman, S. Ahmad, M. B. Riaz, M. Ibrahim, T. Saeed, Investigation of fractional order bacteria dependent disease with the effects of different contact rates, Chaos Solitons Fractals, 159 (2022), 8 pages
-
[30]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon (1993)
-
[31]
I. Ullah, A. Ali, S. Saifullah, Analysis of time-fractional non-linear Kawahara Equations with power law kernel, Chaos Solitons Fractals: X, 9 (2022), 1–8
-
[32]
G. ur Rahman, R. P. Agarwal, Q. Din, Mathematical analysis of giving up smoking model via harmonic mean type incidence rate, Appl. Math. Comput., 354 (2019), 128–148
-
[33]
P. Veeresha, D. G. Prakasha, H. M. Baskonus, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method, Math. Sci. (Springer), 13 (2019), 115–128
-
[34]
X. Wang, J. Yang, X. Li, Dynamics of a Heroin epidemic model with very population, Appl. Math. (Irvine), 2 (2011), 732–738
-
[35]
E. White, C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 208 (2007), 312–324
-
[36]
, WHO, Tobacco, https://www.who.int/news-room/fact-sheets/detail/tobacco, ([Accessed 24 May 2019]),
-
[37]
C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151
-
[38]
C. Xu, D. Mu, Z. Liu, Y. Pang, M. Liao, C. Aouiti, New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 41 pages
-
[39]
C. Xu, W. Zhang, C. Aouiti, Z. Liu, L. Yao, Bifurcation insight for a fractional-order stage-structured predator-prey system incorporating mixed time delays, Math. Methods Appl. Sci., 46 (2023), 9103–9118