An advanced numerical technique for subdivision depth of non-stationary quaternary refinement scheme for curves and surfaces
Authors
A. Mahmood
- Department of Mathematics, The Islamia University of Bahawalpur, Pakistan.
G. Mustafa
- Department of Mathematics, The Islamia University of Bahawalpur, Pakistan.
F. Khan
- Department of Mathematics, The Islamia University of Bahawalpur, Pakistan.
Abstract
Refinement schemes are fundamental in computer graphics for generating smooth curves and surfaces. Quaternary non-stationary subdivision schemes, in particular, have gained prominence due to their ability to handle complex geometric structures. However, determining the subdivision depth for these schemes remains challenging and often requires extensive computational resources. Our paper presents a complete methodology with a step-by-step explanation to explore the depth of these schemes. Since our method relies on convolution techniques, we explain these both theoretically and mathematically. Additionally, several algorithms have been designed to aid in understanding and implementing the method for finding error bounds and subdivision depth in quaternary non-stationary subdivision schemes. These are numerical methods for efficiently computing the error bounds and subdivision depth. The numerical applications of these methods are presented. The proposed method significantly reduces the computational cost associated with determining subdivision depth. These algorithms work when existing methods fail to compute bounds and depths.
Share and Cite
ISRP Style
A. Mahmood, G. Mustafa, F. Khan, An advanced numerical technique for subdivision depth of non-stationary quaternary refinement scheme for curves and surfaces, Journal of Mathematics and Computer Science, 36 (2025), no. 4, 408--431
AMA Style
Mahmood A., Mustafa G., Khan F., An advanced numerical technique for subdivision depth of non-stationary quaternary refinement scheme for curves and surfaces. J Math Comput SCI-JM. (2025); 36(4):408--431
Chicago/Turabian Style
Mahmood, A., Mustafa, G., Khan, F.. "An advanced numerical technique for subdivision depth of non-stationary quaternary refinement scheme for curves and surfaces." Journal of Mathematics and Computer Science, 36, no. 4 (2025): 408--431
Keywords
- Convolution
- error bound
- subdivision depth
- quaternary non-stationary refinement schemes
- algorithm
MSC
References
-
[1]
P. Ashraf, G. Mustafa, A generalized non-stationary 4-point b-ary approximating scheme, Br. J. Math. Comput. Sci., 4 (2014), 104–119
-
[2]
P. Ashraf, G. Mustafa, A. Ghaffar, R. Zahra, K. S. Nisar, E. E. Mahmoud, W. R. Alharbi, Unified framework of approximating and interpolatory subdivision schemes for construction of class of binary subdivision schemes, J. Funct. Spaces, 2020 (2020), 12 pages
-
[3]
P. Ashraf, G. Mustafa, H. A. Khan, D. Baleanu, A. Ghaffar, K. S. Nisar, A shape-preserving variant of Lane-Riesenfeld algorithm, AIMS Math., 6 (2021), 2152–2170
-
[4]
M. Bari, G. Mustafa, A. Ghaffar, K. S. Nisar, D. Baleanu, Construction and analysis of unified 4-point interpolating nonstationary subdivision surfaces, Adv. Differ. Equ., 2021 (2021), 17 pages
-
[5]
C. Beccari, G. Casciola, L. Romani, A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics, Comput. Aided Geom. Des., 24 (2007), 1–9
-
[6]
Z. J. Cai, Convergence, error estimation and some properties of four-point interpolation subdivision scheme, Comput. Aided Geom. Des., 12 (1995), 459–468
-
[7]
A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., (1999)
-
[8]
S. W. Choi, B.-G. Lee, Y. J. Lee, J. Yoon, Stationary subdivision schemes reproducing polynomials, Comput. Aided Geom. Des., 23 (2006), 351–360
-
[9]
F. Cirak, M. J. Scott, E. K. Antonsson, M. Ortiz, P. Schroder, Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput. Aided Des., 34 (2002), 137–148
-
[10]
N. Dyn, Subdivision schemes in CAGD, Adv. Numer. Anal., 2 (1992), 36–104
-
[11]
N. Dyn, Linear and non-linear subdivision schemes in geometric modeling, Found. Comput. Math., Hong Kong, 363 (2008), 68–92
-
[12]
N. Dyn, J. A. Gregory, D. Levin, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx., 7 (1991), 127–147
-
[13]
N. Dyn, D. Levin, Subdivision schemes in geometric modeling, Acta Numer., 11 (2002), 73–144
-
[14]
M.-e. Fang, B. Jeong, J. Yoon, A family of non-uniform subdivision schemes with variable parameters for curve design, Appl. Math. Comput., 313 (2017), 1–11
-
[15]
S. Hashmi, G. Mustafa, Estimating error bounds for quaternary subdivision schemes, J. Math. Anal. Appl., 358 (2009), 159–167
-
[16]
W. Huawei, G. Youjiang, Q. Kaihuai, Error estimation for Doo-Sabin surfaces, Prog. Nat. Sci., 12 (2002), 697–700
-
[17]
S. A. A. Karim, F. Khan, G. Mustafa, A. Shahzad, M. Asghar, An efficient computational approach for computing subdivision depth of non-stationary binary subdivision schemes, Mathematics, 11 (2023), 1–12
-
[18]
M. Moncayo, S. Amat, Error bounds for a class of subdivision schemes based on the two-scale refinement equation, J. Comput. Appl. Math., 236 (2011), 265–278
-
[19]
M. Moncayo, J. F. Reinoso, S. Amat, Tight numerical bounds for digital terrain modeling by interpolatory subdivision schemes, Math. Comput. Simul., 81 (2011), 2258–2269
-
[20]
P. Morin, K. G. Siebert, A. Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci., 18 (2008), 707–737
-
[21]
G. Mustafa, F. Chen, J. Deng, Estimating error bounds for binary subdivision curves/surfaces, J. Comput. Appl. Math., 193 (2006), 596–613
-
[22]
G. Mustafa, M. S. Hashmi, Subdivision depth computation for n-ary subdivision curves/surfaces, Vis. Comput., 26 (2010), 841–851
-
[23]
G. Mustafa, M. S. Hashmi, Subdivision depth computation for tensor product n-ary volumetric models, Abstr. Appl. Anal, 2011 (2011), 22 pages
-
[24]
G. Mustafa, S. Hashmi, N. A. Noshi, Estimating error bounds for tensor product binary subdivision volumetric model, Int. J. Comput. Math., 83 (2006), 879–903
-
[25]
A. Nawaz, A. Ghaffar, F. Khan, S. A. A. Karim, A new 7-point quaternary approximating subdivision scheme, In: Intelli. Sys. Model. Simul. II., Springer, Cham, 444 (2022), 545–566
-
[26]
M. Perini, P. Bosetti, N. Balc, Additive manufacturing for repairing: from damage identification and modeling to Direct Laser Deposition, Rapid Prototyp. J., 26 (2020), 929–940
-
[27]
A. Shahzad, F. Khan, A. Ghaffar, S. W. Yao, M. Inc, S. Ali, A novel numerical method for computing subdivision depth of quaternary schemes, Mathematics, 9 (2021), 1–20
-
[28]
S. S. Siddiqi, M. Younis, The quaternary interpolating scheme for geometric design, ISRN Comput. Graph., 2013 (2013), 8 pages
-
[29]
N. Umetani, B. Bickel, Learning three-dimensional flow for interactive aerodynamic design, ACM Trans. Graph. (TOG)., 37 (2018), 1–10
-
[30]
Integration of CAD and boundary element analysis through subdivision methods, L. Wang, Comput. Ind. Eng., 57 (2009), 691–698
-
[31]
G. Zhou, X.-M. Zeng, G. Zhou, X.-M. Zeng, Int. J. Comput. Math., 91 (2014), 688–703