Boundary value problem of fractional fuzzy Volterra-Fredholm systems
Authors
A. J. Abdulqader
- Department of Mathematics, College of Education, Al-Mustansiriyah University, Iraq.
R. B. Abdulmaged
- Department of Mathematics, College of Education, Al-Mustansiriyah University, Iraq.
Abstract
This paper investigates the suitable conditions for the uniqueness and existence results for a class of fuzzy fractional Caputo Volterra-Fredholm integro differential equations (FFCV-FIDEs) with boundary conditions.
The findings are based on Banach contraction principle and Schaefer's fixed point theorem. Additionally, the solution to the given problem is found using the Adomian decomposition technique (ADT). We support the concept with various instances. The relationship between the lower and upper reduce approximations of the fuzzy solutions has been demonstrated numerically and graphically via MATLAB.
Share and Cite
ISRP Style
A. J. Abdulqader, R. B. Abdulmaged, Boundary value problem of fractional fuzzy Volterra-Fredholm systems, Journal of Mathematics and Computer Science, 36 (2025), no. 4, 432--443
AMA Style
Abdulqader A. J. , Abdulmaged R. B. , Boundary value problem of fractional fuzzy Volterra-Fredholm systems. J Math Comput SCI-JM. (2025); 36(4):432--443
Chicago/Turabian Style
Abdulqader, A. J. , Abdulmaged, R. B. . "Boundary value problem of fractional fuzzy Volterra-Fredholm systems." Journal of Mathematics and Computer Science, 36, no. 4 (2025): 432--443
Keywords
- Volterra-Fredholm equation
- Caputo fractional derivative
- fixed point technique
- ADT
MSC
References
-
[1]
S. Abbasbandy, M. Hashemi, Fuzzy integro-differential equations: formulation and solution using the variational iteration method, Nonlinear Sci. Lett. A, 1 (2010), 413–418
-
[2]
G. Adomian, Solution of physical problems by decomposition, Comput. Math. Appl., 27 (1994), 145–154
-
[3]
G. Adomian, R. Rach, Equality of partial solutions in the decomposition method for linear or nonlinear partial differential equations, Comput. Math. Appl., 19 (1990), 9–12
-
[4]
N. Ahmad, A. Ullah, A. Ullah, S. Ahmad, K. Shah, I. Ahmad, On analysis of the fuzzy fractional order Volterrafredholm integro-differential equation, Alex. Eng. J., 60 (2021), 1827–1838
-
[5]
M. Alaroud, M. Al-Smadi, R. R. Ahmad, U. K. S. Din, An analytical numerical method for solving fuzzy fractional Volterra integro-differential equations, Symmetry, 11 (2019), 19 pages
-
[6]
M. Al-Smadi, O. A. Arqub, Computational algorithm for solving Fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294
-
[7]
A. Arikoglu, I. Ozkol, Solution of fractional differential equations by using differential transform method, Chaos Solitons Fractals, 34 (2007), 1473–1481
-
[8]
O. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. Appl., 28 (2017), 1591–1610
-
[9]
O. A. Arqub, J. Singh, M. Alhodaly, Adaptation of kernel functions-based approach with AtanganaBaleanu-Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations, Math. Methods Appl. Sci., 46 (2023), 7807–7834
-
[10]
O. Arqub, J. Singh, B. Maayah, M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Math. Methods Appl. Sci., 46 (2023), 7965– 7986
-
[11]
B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230 (2013), 119–141
-
[12]
F. E. Browder, W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197–228
-
[13]
S. S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE Trans. Systems Man Cybernet., SMC-2 (1972), 30–34
-
[14]
P. Das, S. Rana, H. Ramos, On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis, J. Comput. Appl. Math., 404 (2022), 15 pages
-
[15]
D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9 (1978), 613–626
-
[16]
D. Dubois, H. Prade, Towards fuzzy differential calculus part 1: integration of fuzzy mappings, Fuzzy Sets Syst., 8 (1982), 1–17
-
[17]
A. A. Hamoud, A. Azeez, K. Ghadle, A study of some iterative methods for solving fuzzy Volterra-Fredholm integral equations, Indones. J. Electr. Eng. Comput. Sci., 11 (2018), 1228–1235
-
[18]
A. Hamoud, M. SH. Bani Issa, K. Ghadle, Existence and uniqueness results for nonlinear Volterra-Fredholm integrodifferential equations, Nonlinear Funct. Anal. Appl., 23 (2018), 797–805
-
[19]
A. A. Hamoud, K. P. Ghadle, Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm integral equation, J. Indian Math. Soc., 85 (2018), 53–69
-
[20]
A. A. Hamoud, K. P. Ghadle, The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques, Probl. Anal. Issues Anal., 7(25) (2018), 41–58
-
[21]
A. A. Hamoud, K. P. Ghadle, Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations, J. Math. Model., 6 (2018), 91–104
-
[22]
A. A. Hamoud, K. Ghadle, S. M. Atshan, The approximate solutions of fractional integro-differential equations by using modified Adomian decomposition method, Khayyam J. Math., 5 (2019), 21–39
-
[23]
A. A. Hamoud, K. P. Ghadle, Homotopy analysis method for the first order fuzzy Volterra-Fredholm integro-differential equations, Indones. J. Electr. Eng. Comput. Sci., 11 (2018), 857–867
-
[24]
A. A. Hamoud, A. D. Khandagale, R. Shah, K. P. Ghadle, Some new results on Hadamard neutral fractional nonlinear Volterra-Fredholm integro-differential equations, Discontinuity Nonlinearity Complex., 12 (2023), 893–903
-
[25]
K. Ivaz, I. Alasadi, A. Hamoud, On the Hilfer fractional Volterra-Fredholm integro differential equations, IAENG Int. J. Appl. Math., 52 (2022), 426–431
-
[26]
W. Jiang, T. Tian, Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, Appl. Math. Model., 39 (2015), 4871–4876
-
[27]
O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317
-
[28]
P. Linz, Analytical and numerical methods for Volterra equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1985)
-
[29]
X. Ma, C. Huang, Numerical solution of fractional integro-differential equations by a hybrid collocation method, Appl. Math. Comput., 219 (2013), 6750–6760
-
[30]
K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York (1993)
-
[31]
S. Momani, M. A. Noor, Numerical methods for fourth-order fractional integro-differential equations, Appl. Math. Comput., 182 (2006), 754–760
-
[32]
M. Osman, Y. Xia, O. A. Omer, A. Hamoud, On the fuzzy solution of linear-nonlinear partial differential equations, Mathematics, 10 (2022), 49 pages
-
[33]
I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego (1999)
-
[34]
K. Sayevand, Analytical treatment of Volterra integro-differential equations of fractional order, Appl. Math. Model., 39 (2015), 4330–4336
-
[35]
M. R. M. Shabestari, R. Ezzati, T. Allahviranloo, Numerical solution of fuzzy fractional integrodifferential equation via two-dimensional Legendre wavelet method, J. Intell. Fuzzy Syst., 34 (2018), 2453–2465
-
[36]
A. A. Sharif, A. A. Hamoud, K. P. Ghadle, On existence and uniqueness of solutions to a class of fractional Volterra- Fredholm initial value problems, Discontinuity Nonlinearity Complex., 12 (2023), 905–916
-
[37]
L. Zhu, Q. Fan, Numerical solution of nonlinear fractional-order-Volterra integro-differential equations by SCW, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1203–1213