Analysis of a parametric delay functional differential equation with nonlocal integral condition
Authors
A. M. A. El-Sayed
- Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt.
M. O. Radwan
- Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt.
H. R. Ebead
- Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt.
Abstract
This paper analyzes a nonlocal problem of a delay functional-differential equation with parameters. We confirm that there is at least one solution \(x \in AC[0,T]\) to the problem. Furthermore, we provide the hypotheses that must be fulfilled for the solution’s uniqueness. The analysis also implements the Hyers-Ulam stability of the problem and the continuous dependence of the unique solution on some parameters. We provide some exceptional cases and examples to illustrate our findings.
Share and Cite
ISRP Style
A. M. A. El-Sayed, M. O. Radwan, H. R. Ebead, Analysis of a parametric delay functional differential equation with nonlocal integral condition, Journal of Mathematics and Computer Science, 36 (2025), no. 4, 455--470
AMA Style
El-Sayed A. M. A. , Radwan M. O. , Ebead H. R. , Analysis of a parametric delay functional differential equation with nonlocal integral condition. J Math Comput SCI-JM. (2025); 36(4):455--470
Chicago/Turabian Style
El-Sayed, A. M. A. , Radwan, M. O. , Ebead, H. R. . "Analysis of a parametric delay functional differential equation with nonlocal integral condition." Journal of Mathematics and Computer Science, 36, no. 4 (2025): 455--470
Keywords
- Delay functional-differential equation
- nonlocal condition
- existence of solutions
- Schauder fixed point theorem
- Hyers-Ulam stability
- continuous dependence
MSC
References
-
[1]
M. R. Abdollahpour, R. Aghayari, M. T. Rassias, Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 437 (2016), 605–612
-
[2]
M. R. Abdollahpour, A. Najati, Stability of linear differential equations of third order, Appl. Math. Lett., 24 (2011), 1827–1830
-
[3]
M. R. Abdollahpour, A. Najati, C. Park, T. M. Rassias, D. Y. Shin, Approximate perfect differential equations of second order, Adv. Difference Equ., 2012 (2012), 5 pages
-
[4]
M. R. Abdollahpour, C. Park, Hyers-Ulam stability of a class of differential equations of second order, J. Comput. Anal. Appl., 18 (2015), 899–903
-
[5]
M. R. Abdollahpour, M. T. Rassias, Hyers–Ulam stability of hypergeometric differential equations, Aequationes Math., 93 (2019), 691–698
-
[6]
J. Acz´el, A short course on functional equations, D. Reidel Publishing Co., Dordrecht (1987)
-
[7]
J. Acz´el, J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge (1989)
-
[8]
C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373–380
-
[9]
Sz. Andr´as, J. J. Kolumb´an, On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions, Nonlinear Anal., 82 (2013), 1–11
-
[10]
R. Bellman, Stability theory of differential equations, Dover Publications, New York (2013)
-
[11]
M. Benchohra, E. P. Gatsori, S. K. Ntouyas, Existence results for semi-linear integrodifferential inclusions with nonlocal conditions, Rocky Mountain J. Math., 34 (2004), 833–848
-
[12]
A. Boucherif, R. Precup, On the nonlocal initial value problem for first order differential equations, Fixed Point Theory, 4 (2003), 205–212
-
[13]
R. F. Brown, A topological introduction to nonlinear analysis, Birkh¨auser Boston, Boston, MA (2004)
-
[14]
T. A. Burton, Stability by fixed point theory for functional differential equations, Dover Publications, Mineola, NY (2006)
-
[15]
T. A. Burton, T. Furumochi, Asymptotic behavior of solutions of functional differential equations by fixed point theorems, Dynam. Systems Appl., 11 (2002), 499–519
-
[16]
E. Castillo, A. Iglesias, R. Ru´ız-Cobo, Functional equations in applied sciences, Elsevier B. V., Amsterdam (2005)
-
[17]
C. Corduneanu, Y. Li, M. Mahdavi, Functional differential equations, John Wiley & Sons, Hoboken, NJ (2016)
-
[18]
R. F. Curtain, A. J. Pritchard, Functional analysis in modern applied mathematics, Academic Press, London-New York (1977)
-
[19]
S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co., River Edge, NJ (2002)
-
[20]
K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin (1985)
-
[21]
J. Dugundji, A. Granas, Fixed point theory. I, Pa´nstwowe Wydawnictwo Naukowe (PWN), Warsaw (1982)
-
[22]
N. Dunford, J. T. Schwartz, Linear operators. Part I, John Wiley & Sons, New York (1988)
-
[23]
P. Dvalishvili, A. Nachaoui, M. Nachaoui, T. Tadumadze, On the Optimization Problem of One Market Relation Containing the Delay Functional Differential Equation, Reports Of Qualitde, 2 (2023), 35–39
-
[24]
A. M. A. El-Sayed, A. A. A. Alhamali, E. M. A. Hamdallah, Analysis of a Fractional-Order Quadratic Functional Integro-Differential Equation with Nonlocal Fractional-Order Integro-Differential Condition, Axioms, 12 (2023), 15 pages
-
[25]
A. M. A. El-Sayed, A. A. A. Alhamali, E. M. A. Hamdallah, H. R. Ebead, Qualitative Aspects of a Fractional-Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint, Fractal Fract., 7 (2023), 16 pages
-
[26]
A. M. A. El-Sayed, E. O. Bin-Taher, Nonlocal and integral conditions problems for a multi-term fractional-order differential equation, Miskolc Math. Notes, 15 (2014), 439–446
-
[27]
A. M. A. El-Sayed, Kh. W. Elkadeky, aratheodory theorem for a nonlocal problem of the differential equation x 0 (t) = f(t, x 0 ) 0 , Alex. J. Math., 1 (2010), 8–14
-
[28]
A. M. A. El-Sayed, W. G. El-Sayed, S. I. Nasim, On the solvability of a delay tempered-fractal differential equation, J. Fract. Calc. Appl., 15 (2024), 14 pages
-
[29]
A. M. A. El-Sayed, E. Hamdallah, H. R. Ebead, Positive nondecreasing solutions of a self-refereed differential equation with two state-delay functions, Adv. Math. Sci. J., 9 (2020), 10357–10365
-
[30]
A. M. A. El-Sayed, M. S. Mohamed, K. M. O. Msaik, On some boundary-value problems of functional integro-differential equations with nonlocal conditions, Malaya J. Mat., 5 (2017), 186–193
-
[31]
T. Faria, L. T. Magalh˜aes, Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation, J. Differ. Equ., 122 (1995), 181–200
-
[32]
M. E. Gordji, Y. J. Cho, M. B. Ghaemi, B. Alizadeh, Stability of the second order partial differential equations, J. Inequal. Appl., 2011 (2011), 10 pages
-
[33]
J. K. Hale, S. M. V. Lunel, Introduction to functional-differential equations, Springer-Verlag, New York (1993)
-
[34]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224
-
[35]
D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equations in several variables, Birkh¨auser Boston, Boston, MA (1998)
-
[36]
D. H. Hyers, T. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125–153
-
[37]
S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135–1140
-
[38]
S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. III, J. Math. Anal. Appl., 311 (2005), 139–146
-
[39]
S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. II, Appl. Math. Lett., 19 (2006), 854–858
-
[40]
S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, New York (2011)
-
[41]
S.-M. Jung, M. T. Rassias, C. Mortici, On a functional equation of trigonometric type, Appl. Math. Comput., 252 (2015), 294–303
-
[42]
H. Khan, C. Tunc¸, A. Khan, Stability results and existence theorems for nonlinear delay-fractional differential equations with ' p-operator, J. Appl. Anal. Comput., 10 (2020), 584–597
-
[43]
V. Kolmanovskii, A. Myshkis, Introduction to the theory and applications of functional differential equations, Springer, Dordrecht (2013)
-
[44]
A. Krawiec, M. Szydłowski, Economic growth cycles driven by investment delay, Econ. Model., 67 (2017), 175–183
-
[45]
Y. Kuang, Delay differential equations with applications in population dynamic, Academic Press, Boston, MA (1993)
-
[46]
J.-C. Li, D.-C. Mei, The influences of delay time on the stability of a market model with stochastic volatility, Phys. A,, 392 (2013), 763–772
-
[47]
Y. Li, Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett., 23 (2010), 306–309
-
[48]
N. MacDonald, Biological delay systems: linear stability theory, Cambridge University Press, Cambridge (1989)
-
[49]
G. A. Monteiro, M. Tvrd´, Generalized linear differential equations in a Banach space: Continuous dependence on a parameter, Discrete Contin. Dyn. Syst., 33 (2013), 283–303
-
[50]
K. A. Murphy, stimation of time- and state-dependent delays and other parameters in functional-differential equations, SIAM J. Appl. Math., 50 (1990), 972–1000
-
[51]
P. H. A. Ngoc, H. Trinh, Stability analysis of nonlinear neutral functional differential equations, SIAM J. Control Optim., 55 (2017), 3947–3968
-
[52]
G. M. N’Gu´er´ekata, A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear Anal., 70 (2009), 1873–1876
-
[53]
T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300
-
[54]
T. M. Rassias, Functional equations and inequalities, Kluwer Academic Publishers, Dordrecht (2000)
-
[55]
S. L. Ross, Differential equations, John Willey & Sons, New York (1984)
-
[56]
M. Ruzhansky, N. Tokmagambetov, B. T. Torebek, On a non-local problem for a multi-term fractional diffusion-wave equation, Fract. Calc. Appl. Anal., 23 (2020), 324–355
-
[57]
P. K. Sahoo, P. Kannappan, Introduction to functional equations, CRC Press, Boca Raton, FL (2011)
-
[58]
C. Tunc¸, E. Bic¸er, Hyers-Ulam-Rassias stability for a first order functional differential equation, J. Math. Fundam. Sci., 47 (2015), 143–153
-
[59]
O. Tunc¸, C. Tunc, Ulam stabilities of nonlinear iterative integro-differential equations, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 117 (2023), 18 pages
-
[60]
O. Tunc¸, C. Tunc¸, G. Petrus¸el, J.-C. Yao, On the Ulam stabilities of nonlinear integral equations and integro-differential equations, Math. Methods Appl. Sci., 47 (2024), 4014–4028
-
[61]
S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publisheres, New York (1960)
-
[62]
S. M. Ulam, Problems in modern mathematics, Science Editions John Wiley & Sons, New York (1964)
-
[63]
J. Wang, M. Fe˘ckan, Y. Zhou, Fractional order iterative functional differential equations with parameter, Appl. Math. Model., 37 (2013), 6055–6067
-
[64]
A. Zada, B. Pervaiz, M. Subramanian, I.-L. Popa, Finite time stability for nonsingular impulsive first order delay differential systems, Appl. Math. Comput., 421 (2022), 23 pages