On soft refined 2-normed spaces
Authors
J. Sanabria
- Departamento de Matematicas, Facultad de Educacion y Ciencias, Universidad de Sucre, Sincelejo, Colombia.
O. Ferrer
- Departamento de Matematicas, Facultad de Educacion y Ciencias, Universidad de Sucre, Sincelejo, Colombia.
A. Sierra
- Centro de Ciencias Matematicas, Universidad Nacional Autonoma de Mexico, Mexico.
Abstract
In this work, we introduce the concepts of refined soft 2-normed spaces and refined soft 2-inner product spaces, obtaining important results such as Cauchy-Schwarz Inequality, that each refined soft 2-inner product induces a refined soft 2-normed space and that a refined soft 2-normed space is induced by a soft 2-inner product if the refined soft 2-normed satisfies the Parallelogram law. For this, we present the definition of refined linearly dependent soft vectors in a soft vector space which also allows us to show that given a classical inner product space, then the standard 2-inner product induces a refined soft 2-inner product space. The results presented here improve considerably the work of Kadhim [D. A. Kadhim, J. Al-Qadisiyah Comput. Sci. Math., \(\bf 6\) (2014), 157--168] and open a line of research in the context of refined soft 2-normed space and refined soft 2-inner product space.
Share and Cite
ISRP Style
J. Sanabria, O. Ferrer, A. Sierra, On soft refined 2-normed spaces, Journal of Mathematics and Computer Science, 37 (2025), no. 1, 1--19
AMA Style
Sanabria J., Ferrer O., Sierra A., On soft refined 2-normed spaces. J Math Comput SCI-JM. (2025); 37(1):1--19
Chicago/Turabian Style
Sanabria, J., Ferrer, O., Sierra, A.. "On soft refined 2-normed spaces." Journal of Mathematics and Computer Science, 37, no. 1 (2025): 1--19
Keywords
- Soft sets
- soft vectors
- soft linear space
- refined soft 2-normed space
- refined soft 2-inner product space
MSC
References
-
[1]
M. Abu Saleem, On soft covering spaces in soft topological spaces, AIMS Math., 9 (2024), 18134–18142
-
[2]
M. I. Ali, F. Feng, X. Y. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553
-
[3]
T. M. Al-shami, Comment on “Soft mappings space”, Sci. World J., 2019 (2019), 2 pages
-
[4]
T. M. Al-shami, Investigation and corrigendum to some results related to g-soft equality and gf-soft equality relations, Filomat, 33 (2019), 3375–3383
-
[5]
T. M. Al-shami, Comments on some results related to soft separation axioms, Afr. Mat., 31 (2020), 1105–1119
-
[6]
T. M. Al-shami, M. E. El-Shafei, On supra soft topological ordered spaces, Arab J. Basic Appl. Sci., 26 (2019), 433–445
-
[7]
T. M. Al-shami, M. E. El-Shafei, Two new forms of ordered soft separation axioms, Demonstr. Math., 53 (2020), 8–26
-
[8]
T. M. Al-shami, M. E. El-Shafei, T-soft equality relation, Turkish J. Math., 44 (2020), 1427–1441
-
[9]
T. M. Al-shami, M. E. El-Shafei, B. A. Asaad, Sum of soft topological ordered spaces, Adv. Math.: Sci. J., 9 (2020), 4695–4710
-
[10]
T. M. Al-shami, A. Mhemdi, A weak form of soft -open sets and its applications via soft topologies, AIMS Math., 8 (2023), 11373–11396
-
[11]
T. M. Al-shami, A. Mhemdi, On soft parametric somewhat-open sets and applications via soft topologies, Heliyon, 9 (2023), 15 pages
-
[12]
T. M. Al-shami, A. Tercan, A. Mhemdi, New soft separation axioms and fixed soft points with respect to total belong and total non-belong relations, Demonstr. Math., 54 (2021), 196–211
-
[13]
A. A. Arefijamaal, G. Sadeghi, Frames in 2-inner product spaces, Iran. J. Math. Sci. Inform., 8 (2013), 123–130
-
[14]
H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York (2011)
-
[15]
Y. J. Cho, P. C. S. Lin, S. S. Kim, A. Misiak, Theory of 2-inner product spaces, Nova Science Publishers, Huntington, NY (2001)
-
[16]
J. B. Conway, A course in functional analysis, Springer-Verlag, New York (1990)
-
[17]
S. Das, P. Majumdar, S. K. Samanta, On soft linear spaces and soft normed linear spaces, Ann. Fuzzy Math. Inform., 9 (2015), 91–109
-
[18]
S. Das, S. K. Samanta, Soft real sets, soft real numbers and their properties, J. Fuzzy Math., 20 (2012), 551–576
-
[19]
S. Das, S. K. Samanta, On soft complex sets and soft complex numbers, J. Fuzzy Math., 21 (2013), 195–216
-
[20]
S. Das, S. K. Samanta, On soft metric spaces, J. Fuzzy Math., 21 (2013), 707–734
-
[21]
B. Dastourian, M. Janfada, Atomic systems in 2-inner product spaces, Iran. J. Math. Sci. Inform., 13 (2018), 103–110
-
[22]
O. Ferrer, A. Sierra, J. Sanabria, Soft frames in soft Hilbert spaces, Mathematics, 9 (2021), 14 pages
-
[23]
S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 28 (1964), 1–43
-
[24]
S. J. John, Soft sets—theory and applications, Springer, Cham (2021)
-
[25]
D. A. Kadhim, On soft 2-inner product spaces, J. Al-Qadisiyah Comput. Sci. Math., 6 (2014), 157–168
-
[26]
E. Korkmaz, M. Riaz, M. Deveci, S. Kadri, A novel approach to fuzzy N-soft sets and its application for identifying and sanctioning cyber harassment on social media platforms, Artif. Intell. Rev., 57 (2024), 22 pages
-
[27]
A. Kundu, T. Bag, Sk. Nazmul, On metrizability and normability of 2-normed spaces, Math. Sci. (Springer), 13 (2019), 69–77
-
[28]
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562
-
[29]
P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in decision making problem, Comput. Math. Appl., 44 (2022), 1077–1083
-
[30]
N. Minculete, R. P˘alt˘anea, Weak n-inner product spaces, Ann. Funct. Anal., 12 (2021), 22 pages
-
[31]
D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31
-
[32]
F. Onat Bulak, H. Bozkurt, Soft quasilinear operators in soft normed quasilinear spaces, J. Intell. Fuzzy Syst., 45 (2023), 4847–4856
-
[33]
K. Qin, Z. Hong, On soft equality, J. Comput. Appl. Math., 234 (2010), 1347–1355
-
[34]
J. Sanabria, M. Álvarez, O. Ferrer, Fuzzy set and soft set theories as tools for vocal risk diagnosis, Appl. Comput. Intell. Soft Comput., 2023 (2023), 12 pages
-
[35]
J. Sanabria, K. Rojo, F. Abad, A new approach of soft rough sets and a medical application for the diagnosis of Coronavirus disease, AIMS Math., 8 (2023), 2686–2707
-
[36]
R. Thakur, S. K. Samanta, Soft Banach algebra, Ann. Fuzzy Math. Inform., 10 (2015), 397–412
-
[37]
P. Zhu, Q. Wen, Operations on soft sets revisited, J. Appl. Math., 2013 (2013), 7 pages