\(\overline{\varphi({\tt{x}})}\)-Tribonnaci polynomial‎, ‎numbers‎, ‎and its sum

Volume 37, Issue 1, pp 32--44 https://dx.doi.org/10.22436/jmcs.037.01.03
Publication Date: September 11, 2024 Submission Date: March 22, 2024 Revision Date: July 01, 2024 Accteptance Date: July 08, 2024

Authors

R. Pandurangan - Department of Mathematics‎, ‎School of Engineering and Technology, ‎Dhanalakshmi Srinivasan University, ‎Samayapuram‎, ‎Tiruchirapalli District, ‎Tamil Nadu-621 112, India. S. Kannan - Department of Mathematics‎, St‎. ‎Joseph’s College of Engineering, Old Mahabalipuram Road, Chennai,Tamilnadu-600 119, ‎India. S. T‎. ‎M‎. ‎Thabet - Department of Mathematics‎, ‎Saveetha School of Engineering‎, ‎Saveetha Institute of Medical and Technical Sciences‎, Saveetha University, Chennai 602105‎, ‎Tamil Nadu‎, India. - Department of Mathematics‎, ‎Radfan University College‎, University of Lahej‎, Lahej‎, Yemen. - Department of Mathematics‎, ‎College of Science‎, Korea University, Seoul 02814, South Korea. M. Vivas-Cortez - Faculty of Exact and Natural Sciences‎, ‎School of Physical Sciences and Mathematics, ‎Pontifical‎ Catholic University of Ecuador, ‎Av‎. ‎12 de octubre 1076 y Roca‎, ‎Apartado Postal 17-01-2184, Quito, ‎Ecuador. I. Kedim - Department of Mathematics‎, ‎College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, ‎Al-Kharj 11942, Saudi Arabia.


Abstract

‎This study presents a general third-order nabla difference operator that allows us to get \(\overline{\varphi({\tt{x}})}\)-Tribonacci sequences‎, ‎Tribonacci numbers‎, ‎and their sum using the coefficients of different trigonometric functions and their‎ ‎inverse‎. ‎In this section‎, ‎we examined the numerical solutions and \(C^*\)-solutions of the‎ ‎\(\overline{\varphi({\tt{x}})}\)-Tribonacci sequences for different functions‎. ‎In addition‎, ‎some interesting conclusions and theorems are obtained for the sum of the terms of the Tribonacci‎ ‎sequence‎. ‎Also‎, ‎we offer appropriate examples to show how to use MATLAB to demonstrate our results‎. ‎


Share and Cite

  • Share on Facebook
  • Share on X
  • Share on LinkedIn
ISRP Style

R. Pandurangan, S. Kannan, S. T‎. ‎M‎. ‎Thabet, M. Vivas-Cortez, I. Kedim, \(\overline{\varphi({\tt{x}})}\)-Tribonnaci polynomial‎, ‎numbers‎, ‎and its sum, Journal of Mathematics and Computer Science, 37 (2025), no. 1, 32--44

AMA Style

Pandurangan R., Kannan S., ‎Thabet S. T‎. ‎M‎., Vivas-Cortez M., Kedim I., \(\overline{\varphi({\tt{x}})}\)-Tribonnaci polynomial‎, ‎numbers‎, ‎and its sum. J Math Comput SCI-JM. (2025); 37(1):32--44

Chicago/Turabian Style

Pandurangan, R., Kannan, S., ‎Thabet, S. T‎. ‎M‎., Vivas-Cortez, M., Kedim, I.. "\(\overline{\varphi({\tt{x}})}\)-Tribonnaci polynomial‎, ‎numbers‎, ‎and its sum." Journal of Mathematics and Computer Science, 37, no. 1 (2025): 32--44


Keywords


MSC


References