A constrained problem of state dependent pantograph functional equation constrained by its conjugate
Authors
A. M. A. El-Sayed
- Faculty of Science, Alexandria University, Alexandria, Egypt.
E. M. Al-Barg
- Faculty of Science, Sirt University, Libya.
H. R. Ebead
- Faculty of Science, Alexandria University, Alexandria, Egypt.
Abstract
In this paper, we define the state-dependent pantograph functional equation and study the existence and uniqueness of its solution and prove some data dependence theorems, then we investigate the existence of the solution of a constrained problem of the state-dependent pantograph functional equation constrained by its conjugate equation. Moreover, we demonstrate the continuous dependence of the solution. We also examine the Hyres-Ulam stability of our problem.
Share and Cite
ISRP Style
A. M. A. El-Sayed, E. M. Al-Barg, H. R. Ebead, A constrained problem of state dependent pantograph functional equation constrained by its conjugate, Journal of Mathematics and Computer Science, 37 (2025), no. 1, 94--105
AMA Style
El-Sayed A. M. A. , Al-Barg E. M. , Ebead H. R. , A constrained problem of state dependent pantograph functional equation constrained by its conjugate. J Math Comput SCI-JM. (2025); 37(1):94--105
Chicago/Turabian Style
El-Sayed, A. M. A. , Al-Barg, E. M. , Ebead, H. R. . "A constrained problem of state dependent pantograph functional equation constrained by its conjugate." Journal of Mathematics and Computer Science, 37, no. 1 (2025): 94--105
Keywords
- Constrained problem
- pantograph functional equation
- state-dependent
- continuous dependence
- Hyres-Ulam stable
MSC
References
-
[1]
S. M. Al-Issa, A. M. A. El-Sayed, H. H. G. Hashem, An outlook on hybrid fractional modelling of a heat controller with multi-valued feedback control, Fractal Fract., 7 (2023), 19 pages
-
[2]
P. K. Anh, N. T. T. Lan, N. M. Tuan, Solutions to systems of partial differential equations with weighted self-reference and heredity, Electron. J. Differ. Equ., 2012 (2012), 14 pages
-
[3]
J. Bana´s, I. J. Cabrera, On existence and asymptotic behaviour of solutions of a functional integral equation, Nonlinear Anal., 66 (2007), 2246–2254
-
[4]
L. Bogachev, G. Derfel, S. Molchanov, J. Ochendon, On bounded solutions of the balanced generalized pantograph equation, In: Topics in stochastic analysis and nonparametric estimation, Springer, New York, 145 (2008), 29–49
-
[5]
A. Buicá, Existence and continuous dependence of solutions of some functional differential equations, Seminar on Fixed Point Theory, 3 (1995), 1–14
-
[6]
M. De la Sen, S. Alonso-Quesada, Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases, Appl. Math. Comput., 215 (2009), 2616–2633
-
[7]
A. M. A. El-Sayed, M. A. H. Alrashdi, On a functional integral equation with constraint existence of solution and continuous dependence, Int. J. Differ. Equ., 18 (2019), 37–48
-
[8]
A. M. A. El-Sayed, M. M. S. Ba-Ali, E. M. A. Hamdallah, An Investigation of a Nonlinear Delay Functional Equation with a Quadratic Functional Integral Constraint, Mathematics, 11 (2023), 24 pages
-
[9]
A. M. A. El-Sayed, M. M. S. Ba-Ali, E. M. Hamdallah, On the pantograph functional equation, Electron. J. Math. Anal. Appl., 12 (2024), 1–12
-
[10]
A. M. A. El-Sayed, H. R. Ebead, Existence of positive solutions for a state-dependent hybrid functional differential equation, IAENG Int. J. Appl. Math., 50 (2020), 1–7
-
[11]
A. El-Sayed, E. Hamdallah, H. Ebead, On a nonlocal boundary value problem of a state-dependent differential equation, Mathematics, 9 (2021), 1–12
-
[12]
A. M. A. El-Sayed, A. A. A. Alhamali, E. M. A. Hamdallah, H. R. Ebead, Qualitative Aspects of a Fractional- Order Integro-Differential Equation with a Quadratic Functional Integro-Differential Constraint, Fractal Fract., 7 (2023), 16 pages
-
[13]
A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis. Vol. 1. Metric and normed spaces, Graylock Press, Rochester, NY (1957)
-
[14]
J.-C. Letelier, T. Kuboyama, H. Yasuda, M.-L. Cárdenas, A. Cornish-Bowden, A self-referential equation, x(x) = x, obtained by using the theory of (m; r) systems: Overview and applications, Algebraic Biol., 2005 (2005), 115–126
-
[15]
D. Li, C. Zhang, Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simul., 172 (2020), 244–257
-
[16]
M. Miranda, Jr., E. Pascali, On a type of evolution of self-referred and hereditary phenomena, Aequationes Math., 71 (2006), 253–268
-
[17]
P. Nasertayoob, Solvability and asymptotic stability of a class of nonlinear functional-integral equation with feedback control, Commun. Nonlinear Anal., 5 (2018), 19–27
-
[18]
A. Pelczar, On some iterative-differential equations. I, Zeszyty Nauk. Uniw. Jagiello ´ n. Prace Mat., 12 (1968), 53–56
-
[19]
S. Rezapour, S. Etemad, R. P. Agarwal, K. Nonlaopon, On a Lyapunov-Type Inequality for Control of a y-Model Thermostat and the Existence of Its Solutions, Mathematics, 10 (2022), 11 pages
-
[20]
N. M. Tuan, L. T. Nguyen, On solutions of a system of hereditary and self-referred partial-differential equations, Numer. Algorithms, 55 (2010), 101–113
-
[21]
O. Tunç, C. Tunç, Ulam stabilities of nonlinear iterative integro-differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 117 (2023), 18 pages
-
[22]
O. Tunç, C. Tunç, On Ulam stabilities of iterative Fredholm and Volterra integral equations with multiple time-varying delays, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 118 (2024), 20 pages
-
[23]
O. Tunç, C. Tunç, G. Petru¸sel, J.-C. Yao, On the Ulam stabilities of nonlinear integral equations and integro-differential equations, Math. Methods Appl. Sci., 47 (2024), 4014–4028
-
[24]
S. K. Vanani, J. S. Hafshejani, F. Soleymani, M. Khan, On the numerical solution of generalized pantograph equation, World Appl. Sci. J., 13 (2011), 2531–2535