Some important results for the conformable fractional stochastic pantograph differential equations in the \(\mathbf{L}^{\mathrm{p}}\) space
Authors
M. I. Liaqat
- Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan.
F. Ud Din
- Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New MuslimTown, Lahore 54600, Pakistan.
A. Akgul
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
- Siirt University, Art and Science Faculty, Department of Mathematics, 56100 Siirt, Turkey.
M. B. Riaz
- IT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czech Republic.
- Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon.
Abstract
Important mathematical topics include existence, uniqueness, continuous dependency, regularity, and the averaging principle. In this research work, we establish these results for the conformable fractional stochastic pantograph differential equations (CFSPDEs) in \(\mathbf{L}^{\mathrm{p}}\) space. The situation of \(\mathrm{p}=2\) is generalized by the obtained findings. First, we establish the existence and uniqueness results by applying the contraction mapping principle under a suitably weighted norm and demonstrating the continuous dependency of solutions on both the initial values and fractional exponent \(\phi\). The second section is devoted to examining the regularity of time. As a result, we find that, for each \(\Phi\in(0,\phi-\frac{1}{2})\), the solution to the considered problem has a \(\Phi\)-Hölder continuous version. Next, we study the averaging principle by using Jensen's, Grönwall-Bellman's, Hölder's, and Burkholder-Davis-Gundy's inequalities. To help with the understanding of the theoretical results, we provide three applied examples at the end.
Share and Cite
ISRP Style
M. I. Liaqat, F. Ud Din, A. Akgul, M. B. Riaz, Some important results for the conformable fractional stochastic pantograph differential equations in the \(\mathbf{L}^{\mathrm{p}}\) space, Journal of Mathematics and Computer Science, 37 (2025), no. 1, 106--131
AMA Style
Liaqat M. I. , Ud Din F., Akgul A., Riaz M. B., Some important results for the conformable fractional stochastic pantograph differential equations in the \(\mathbf{L}^{\mathrm{p}}\) space. J Math Comput SCI-JM. (2025); 37(1):106--131
Chicago/Turabian Style
Liaqat, M. I. , Ud Din, F., Akgul, A., Riaz, M. B.. "Some important results for the conformable fractional stochastic pantograph differential equations in the \(\mathbf{L}^{\mathrm{p}}\) space." Journal of Mathematics and Computer Science, 37, no. 1 (2025): 106--131
Keywords
- Pantograph problem
- existence and uniqueness
- continuous dependency
- regularity
- averaging principle
- conformable fractional derivative
MSC
References
-
[1]
M. Abouagwa, J. Li, Approximation properties for solutions to Itô-Doob stochastic fractional differential equations with non-Lipschitz coefficients, Stoch. Dyn., 19 (2019), 21 pages
-
[2]
S. Albosaily, W. W. Mohammed, A. E. Hamza, M. El-Morshedy, H. Ahmad, The exact solutions of the stochastic fractional-space Allen–Cahn equation, Open Phys., 20 (2022), 23–29
-
[3]
W. F. Alfwzan, H. Khan, J. Alzabut, Stability analysis for a fractional coupled hybrid pantograph system with p-Laplacian operator, Results Control Optim., 14 (2024), 11 pages
-
[4]
G. Arthi, K. Suganya, Controllability of higher order stochastic fractional control delay systems involving damping behavior, Appl. Math. Comput., 410 (2021), 13 pages
-
[5]
T. Botmart, Z. Sabir, M. A. Z. Raja, W. Weera, R. Sadat, M. R. Ali, A numerical study of the fractional order dynamical nonlinear susceptible infected and quarantine differential model using the stochastic numerical approach, Fractal Fract., 6 (2022), 1–13
-
[6]
P. Chen, Y. Li, Nonlocal Cauchy problem for fractional stochastic evolution equations in Hilbert spaces, Collect. Math., 66 (2015), 63–76
-
[7]
P. Chen, Y. Li, X. Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert spaces, Commun. Pure Appl. Anal., 14 (2015), 1817–1840
-
[8]
P. Chen, X. Zhang, Y. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Calc. Appl. Anal., 19 (2016), 1507–1526
-
[9]
J. Cui, L. Yan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. A, 44 (2011), 16 pages
-
[10]
R. C. Dalang, M. Sanz-Solé, Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three, Mem. Amer. Math. Soc., (2009)
-
[11]
A. M. Djaouti, Z. A. Khan, M. I. Liaqat, A. Al-Quran, A novel technique for solving the nonlinear fractional-order smoking model, Fractal Fract., 8 (2024), 21 pages
-
[12]
A. M. Djaouti, Z. A. Khan, M. I. Liaqat, A. Al-Quran, Existence uniqueness and averaging principle of fractional neutral stochastic differential equations in the Lp space with the framework of the -Caputo derivative, Mathematics, 12 (2024), 20 pages
-
[13]
A. M. Djaouti, Z. A. Khan, M. I. Liaqat, A. Al-Quran, A study of some generalized results of neutral stochastic differential equations in the framework of Caputo-Katugampola fractional derivatives, Mathematics, 12 (2024), 20
-
[14]
L. C. Evans, An introduction to stochastic differential equations, American Mathematical Society, Providence, RI (2013)
-
[15]
P. Gao, Averaging principle for multiscale stochastic Klein-Gordon-heat system, J. Nonlinear Sci., 29 (2019), 1701–1759
-
[16]
X. Han, P. E. Kloeden, Random ordinary differential equations and their numerical solution, Springer, Singapore (2017)
-
[17]
D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, Berlin-New York (1981)
-
[18]
N. Jacob, Y.Wang, C. Yuan, Numerical solutions of stochastic differential delay equations with jumps, Stoch. Anal. Appl., 27 (2009), 825–853
-
[19]
O. Kahouli, S. Albadran, A. Aloui, B. Makhlouf, Ulam-Hyers stability of pantograph Hadamard fractional stochastic differential Equations, Symmetry, 15 (2023), 9 pages
-
[20]
A. Karczewska, C. Lizama, Solutions to stochastic fractional oscillation equations, Appl. Math. Lett., 23 (2010), 1361–1366
-
[21]
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70
-
[22]
H. Khan, S. Ahmed, J. Alzabut, A. T. Azar, J. F. Gómez-Aguilar, Nonlinear variable order system of multi-point boundary conditions with adaptive finite-time fractional-order sliding mode control, Int. J. Dyn. Control, 5 (2024), 2597–2613
-
[23]
K. Li, J. Peng, Controllability of fractional neutral stochastic functional differential systems, Z. Angew. Math. Phys., 65 (2014), 941–959
-
[24]
Z. Li, L. Xu, Exponential stability in mean square of stochastic functional differential equations with infinite delay, Acta Appl. Math., 174 (2021), 18 pages
-
[25]
M. I. Liaqat, A. Akgül, A novel approach for solving linear and nonlinear time-fractional Schrödinger equations, Chaos Solitons Fractals, 162 (2022), 20 pages
-
[26]
M. I. Liaqat, A. Akgül, H. Abu-Zinadah, Analytical investigation of some time-fractional Black-Scholes models by the Aboodh residual power series method, Mathematics, 11 (2023), 19 pages
-
[27]
M. I. Liaqat, A. Akgül, M. Bayram, Series and closed form solution of Caputo time-fractional wave and heat problems with the variable coefficients by a novel approach, Opt. Quantum Electron., 56 (2024), 35 pages
-
[28]
W. Liu, M. Röckner, X. Sun, Y. Xie, Strong averaging principle for slow-Fast stochastic partial differential equations with Locally monotone coefficients, Appl. Math. Optim., 87 (2023), 31 pages
-
[29]
S. V. Lototsky, B. L. Rozovsky, Stochastic partial differential equations, Springer, Cham (2017)
-
[30]
D. Luo, M. Tian, Q. Zhu, Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos Solitons Fractals, 158 (2022), 9 pages
-
[31]
D. Luo, Q. Zhu, Z. Luo, An averaging principle for stochastic fractional differential equations with time-delays, Appl. Math. Lett., 105 (2020), 8 pages
-
[32]
Z. Ma, J. Yang, Averaging principle for two time-scales stochastic partial differential equations with reflection, Appl. Math. Optim., 89 (2024), 47 pages
-
[33]
M. Niu, B. Xie, Regularity of a fractional partial differential equation driven by space-time white noise, Proc. Amer. Math. Soc., 138 (2010), 1479–1489
-
[34]
J.-C. Pedjeu, G. S. Ladde, Stochastic fractional differential equations: modeling, method and analysis, Chaos Solitons Fractals, 45 (2012), 279–293
-
[35]
B. L. Rozovski˘ı,, Stochastic evolution systems: linear theory and applications to non-linear filtering, Kluwer Academic Publishers Group, Dordrecht (1990)
-
[36]
R. Schnaubelt, M. Veraar, Regularity of stochastic Volterra equations by functional calculus methods, J. Evol. Equ., 17 (2017), 523–536
-
[37]
˘I. M. Stoyanov, D. D. Ba˘ınov, The averaging method for a class of stochastic differential equations, Ukrain. Mat. Ž., 26 (1974), 186–194
-
[38]
E. Viera-Martin, J. F. Gomez-Aguilar, J. E. Solis-Perez, J. A. Hernandez-Perez, R. F. Escobar-Jimenez, E. Viera-Martin, J. F. Gomez-Aguilar, J. E. Solis-Perez, J. A. Hernandez-Perez, R. F. Escobar-Jimenez, Eur. Phys. J. Spec. Top., 23 (2022), 2059–2095
-
[39]
Y. Wang, X. Mei, J. Liu, Hölder regularity in time of solutions to the generalized surface quasi-geostrophic equation, Appl. Math. Lett., 137 (2023), 7 pages
-
[40]
G. Xiao, J. Wang, Stability of solutions of Caputo fractional stochastic differential equations, Nonlinear Anal. Model. Control, 26 (2021), 581–596
-
[41]
Y. Xu, B. Pei, Y. Li, Approximation properties for solutions to non-Lipschitz stochastic differential equations with Lévy noise, Math. Methods Appl. Sci., 38 (2015), 2120–2131
-
[42]
W. Xu, W. Xu, S. Zhang, The averaging principle for stochastic differential equations with Caputo fractional derivative, Appl. Math. Lett., 93 (2019), 79–84
-
[43]
Z. U. A. Zafar, M. H. DarAssi, I. Ahmad, T. A. Assiri, M. Z. Meetei, M. A. Khan, A. M. Hassan, Numerical simulation and analysis of the stochastic HIV/AIDS model in fractional order, Results Phys., 53 (2023), 14 pages
-
[44]
J. Zhang, Y. Tang, J. Huang, A fast Euler-Maruyama method for fractional stochastic differential equations, J. Appl. Math. Comput., 69 (2023), 273–291