A comparative study of numerical methods for singularly perturbed boundary value problems
Authors
Kamran
- Department of Mathematics, Islamia College Peshawar, Peshawar 25120, Khyber Pakhtoonkhwa, Pakistan.
S. Aljawi
- Department of Mathematical Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, P.O. Box 84428, Saudi Arabia.
M. Irfan
- Department of Mathematics, Islamia College Peshawar, Peshawar 25120, Khyber Pakhtoonkhwa, Pakistan.
D. Santina
- Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia.
N. Mlaiki
- Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia.
Abstract
Singularly perturbed boundary value problems (SPBVPs) plays an important role in modeling various phenomena in engineering and other science fields.
The aim of this article is to compare the performance of numerical methods applied to solve the SPBVPs, which are challenging due to the presence of small
perturbation parameters leading to boundary or interior layers. Four numerical methods are compared, namely, the local radial basis function method, the
improved Talbot's method, the Euler's method, and the Weeks method. The main objective of this work is to improve the stability and accuracy of solutions for
SPBVPs, which are important for many applications in science and engineering. We consider two-point SPBVPs with a boundary layer
at one endpoint. To evaluate the performance and effectiveness of the presented numerical techniques, numerical approximations of four SPBVPs are derived and
compared with the analytical solutions. The results presented in the tables and figures validate that the proposed numerical schemes are highly accurate and
clearly outperform the outcomes of other methods. Furthermore, results from the functional analysis were used to study the existence of the solution to the considered
model and generate sufficient requirements for Ulam-Hyers stability.
Share and Cite
ISRP Style
Kamran, S. Aljawi, M. Irfan, D. Santina, N. Mlaiki, A comparative study of numerical methods for singularly perturbed boundary value problems, Journal of Mathematics and Computer Science, 37 (2025), no. 2, 132--153
AMA Style
Kamran, Aljawi S., Irfan M., Santina D., Mlaiki N., A comparative study of numerical methods for singularly perturbed boundary value problems. J Math Comput SCI-JM. (2025); 37(2):132--153
Chicago/Turabian Style
Kamran,, Aljawi, S., Irfan, M., Santina, D., Mlaiki, N.. "A comparative study of numerical methods for singularly perturbed boundary value problems." Journal of Mathematics and Computer Science, 37, no. 2 (2025): 132--153
Keywords
- Singularly perturbed BVPs
- local radial basis functions
- Euler's method
- improved Talbot's method
- Weeks method
- Laplace transform
MSC
References
-
[1]
J. Abate, W. Whitt, A unified framework for numerically inverting Laplace transforms, INFORMS J. Comput., 18 (2006), 408–421
-
[2]
T. Abdeljawad, A. Younus, M. A. Alqudah, U. Atta, On fuzzy conformable double Laplace transform with applications to partial differential equations, Comput. Model. Eng. Sci., 134 (2023), 2163–2191
-
[3]
R. P. Agarwal, M. Meehan, D. O’regan, Fixed point theory and applications, Cambridge University Press, Cambridge (2001)
-
[4]
S. Ahmed, S. Jahan, K. J. Ansari, K. Shah, T. Abdeljawad, Wavelets collocation method for singularly perturbed differential difference equations arising in control system, Results Appl. Math., 21 (2024), 13 pages
-
[5]
M. Ahsan, M. Bohner, A. Ullah, A. A. Khan, S. Ahmad, A Haar wavelet multi-resolution collocation method for singularly perturbed differential equations with integral boundary conditions, Math. Comput. Simul., 204 (2023), 166–180
-
[6]
A. Ali, J. F. Gómez-Aguilar, A transform based local RBF method for 2D linear PDE with Caputo-Fabrizio derivative, C. R. Math. Acad. Sci. Paris, 358 (2020), 831–842
-
[7]
I. Ali, S. Haq, R. Ullah, S. U. Arifeen, Approximate Solution of Second Order Singular Perturbed and Obstacle Boundary Value Problems Using Meshless Method Based on Radial Basis Functions, J. Nonlinear Math. Phys., 30 (2023), 215–234
-
[8]
Z. Avazzadeh, O. Nikan, J. Tenreiro Machado, M. N. Rasoulizadeh, Numerical analysis of time-fractional Sobolev equation for fluid-driven processes in impermeable rocks, Adv. Contin. Discrete Models, 2022 (2022), 14 pages
-
[9]
I. A. Bhat, L. N. Mishra, V. N. Mishra, C. Tunç, O. Tunç, Precision and efficiency of an interpolation approach to weakly singular integral equations, Int. J. Numer. Methods Heat Fluid Flow, 34 (2024), 1479–1499
-
[10]
H. G. Debela, S. B. Kejela, A. D. Negassa, Exponentially Fitted Numerical Method for Singularly Perturbed Differential- Difference Equations, Int. J. Differ. Equ., 20 (2020), 13 pages
-
[11]
H. G. Debela, G. F. Duressa, Accelerated fitted operator finite difference method for singularly perturbed delay differential equations with non-local boundary condition, J. Egypt. Math. Soc., 28 (2020), 16 pages
-
[12]
B. Dingfelder, J. A. C. Weideman, An improved Talbot method for numerical Laplace transform inversion, Numer. Algorithms, 68 (2015), 167–183
-
[13]
I. P. Gavrilyuk, V. L. Makarov, Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces, SIAM J. Numer. Anal., 43 (2005), 2144–2171
-
[14]
F. Z. Geng, S. P. Qian, S. Li, A numerical method for singularly perturbed turning point problems with an interior layer, J. Comput. Appl. Math., 255 (2014), 97–105
-
[15]
M. B. Ghaemi, M. E. Gordji, B. Alizadeh, C. Park, Hyers-Ulam stability of exact second-order linear differential equations, Adv. Differ. Equ., 2012 (2012), 7 pages
-
[16]
V. Y. Glizer, Asymptotic analysis and solution of a finite-horizon H1 control problem for singularly-perturbed linear systems with small state delay, J. Optim. Theory. Appl., 117 (2003), 295–325
-
[17]
D. J. Halsted, D. E. Brown, Zakian’s technique for inverting Laplace transforms, Chem. Eng. J., 3 (1972), 312–313
-
[18]
P. Hammachukiattikul, E. Sekar, A. Tamilselvan, R. Vadivel, N. Gunasekaran, P. Agarwal, Comparative study on numerical methods for singularly perturbed advanced-delay differential equations, J. Math., 2021 (2021), 15 pages
-
[19]
H. Hassanzadeh, M. Pooladi-Darvish, Comparison of different numerical Laplace inversion methods for engineering applications, Appl. Math. Comput., 189 (2007), 1966–1981
-
[20]
G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, J. Comput. Appl. Math., 10 (1984), 113–132
-
[21]
F. O. Ilicasu, D. H. Schultz, High-order finite-difference techniques for linear singular perturbation boundary value problems, Comput. Math. Appl., 47 (2004), 391–417
-
[22]
S. Jelbart, N. Pages, V. Kirk, J. Sneyd, M. Wechselberger, Process-oriented geometric singular perturbation theory and calcium dynamics, SIAM J. Appl. Dyna. Syst., 21 (2022), 982–1029
-
[23]
M. K. Kadalbajoo, P. Arora, V. Gupta, Collocation method using artificial viscosity for solving stiff singularly perturbed turning point problem having twin boundary layers, Comput. Math. Appl., 61 (2011), 1595–1607
-
[24]
Kamran, M. Irfan, F. M. Alotaibi, S. Haque, N. Mlaiki, K. Shah, RBF-based local meshless method for fractional diffusion equations, Fractal Fract., 7 (2023), 21 pages
-
[25]
Kamran, S. U. Khan, S. Haque, N. Mlaiki, On the Approximation of Fractional-Order Differential Equations Using Laplace Transform and Weeks Method, Symmetry, 15 (2023), 16 pages
-
[26]
M. Kumar, P. Singh, H. K. Mishra, An initial-value technique for singularly perturbed boundary value problems via cubic spline, Int. J. Comput. Methods Eng. Sci. Mech., 8 (2007), 419–427
-
[27]
C. K. Lee, X. Liu, S. C. Fan, Local multiquadric approximation for solving boundary value problems, Comput. Mech., 30 (2003), 396–409
-
[28]
E. Liz, C. Lois-Prados, A note on the Lasota discrete model for blood cell production, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 701–713
-
[29]
A. Luongo, S. Casciati, D. Zulli, Perturbation method for the dynamic analysis of a bistable oscillator under slow harmonic excitation, Smart Struct. Syst., 18 (2016), 183–196
-
[30]
M. Maruši´c, On , Math. Commun., 19 (2014), 545–559
-
[31]
S. Natesan, J. Jayakumar, J. Vigo-Aguiar, Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J. Comput. Appl. Math., 158 (2003), 121–134
-
[32]
A. H. Nayfeh, Perturbation Methods, John Wiley & Sons, New York-London-Sydney (1973)
-
[33]
N. N. Nefedov, L. Recke, K. R. Schneider, Existence and asymptotic stability of periodic solutions with an interior layer of reaction advection diffusion equations, J. Math. Anal. Appl., 405 (2013), 90–103
-
[34]
O. Nikan, Z. Avazzadeh, J. A. T. Machado, A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer, J. Adv. Res., 32 (2021), 45–60
-
[35]
A. Noorizadegan, D. L. Young, C.-S. Chen, A novel local radial basis function collocation method for multi-dimensional piezoelectric problems, J. Intell. Mater. Syst. Struct., 33 (2022), 1574–1587
-
[36]
C. E. Pearson, On a differential equation of boundary layer type, J. Math. Phys., 47 (1968), 134–154
-
[37]
K. Phaneendra, Y. N. Reddy, G. B. S. L. Soujanya, Non-iterative numerical integration method for singular perturbation problems exhibiting internal and twin boundary layers, Int. J. Appl. Math. Comput., 3 (2011), 9–20
-
[38]
J. Quinn, A numerical method for a nonlinear singularly perturbed interior layer problem using an approximate layer location, J. Comput. Appl. Math., 290 (2015), 500–515
-
[39]
P. Rai, K. K. Sharma, Numerical study of singularly perturbed differential difference equation arising in the modeling of neuronal variability, Comput. Math. Appl., 63 (2012), 118–132
-
[40]
H. Ramos, J. Vigo-Aguiar, S. Natesan, R. García-Rubio, M. A. Queiruga, Numerical solution of nonlinear singularly perturbed problems on nonuniform meshes by using a non-standard algorithm, J. Math. Chem., 48 (2010), 38–54
-
[41]
M. Safinejad, M. M. Moghaddam, A local meshless RBF method for solving fractional integro-differential equations with optimal shape parameters, Ital. J. Pure Appl. Math., 41 (2019), 382–398
-
[42]
B. Šarler, R. Vertnik, Meshfree explicit local radial basis function collocation method for diffusion problems, Comput. Math. Appl., 51 (2006), 1269–1282
-
[43]
R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., 3 (1995), 251–264
-
[44]
F. A. Shah, R. Abass, J. Iqbal, Numerical solution of singularly perturbed problems using Haar wavelet collocation method, Cogent Math., 3 (2016), 13 pages
-
[45]
F. A. Shah, Kamran, W. Boulila, A. Koubaa, N. Mlaiki, Numerical Solution of Advection-Diffusion Equation of Fractional Order Using Chebyshev Collocation Method, Fractal Fract., 7 (2023), 20 pages
-
[46]
F. A. Shah, Kamran, D. Santina, N. Mlaiki, S. Aljawi, Application of a hybrid pseudospectral method to a new twodimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order, Netw. Heterog. Media, 19 (2024), 44–85
-
[47]
F. A. Shah, Kamran, K. Shah, T. Abdeljawad, Numerical modelling of advection diffusion equation using Chebyshev spectral collocation method and Laplace transform, Results Appl. Math., 21 (2024), 16 pages
-
[48]
D. Sheen, I. H. Sloan, V. Thomée, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal., 23 (2003), 269–299
-
[49]
J. L. Schiff, The Laplace transform: theory and applications, Springer-Verlag, New York (1999)
-
[50]
Siraj-ul-Islam, R. Vertnik, B. Šarler, Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations, Appl. Numer. Math., 67 (2013), 136–151
-
[51]
H. Stehfest, Algorithm 368: Numerical inversion of Laplace transforms [D5], Commun. ACM., 13 (1970), 47–49
-
[52]
A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl., 23 (1979), 97–120
-
[53]
L. N. Trefethen, D. Bau III, Numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1997)
-
[54]
O. Tunç, C. Tunç, Ulam stabilities of nonlinear iterative integro-differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 117 (2023), 18 pages
-
[55]
O. Tunç, C. Tunç, On Ulam stabilities of iterative Fredholm and Volterra integral equations with multiple time-varying delays, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 118 (2024), 20 pages
-
[56]
J. Vigo-Aguiar, S. Natesan, An efficient numerical method for singular perturbation problems, J. Comput. Appl. Math., 192 (2006), 132–141
-
[57]
A.-M. Wazwaz, Linear and nonlinear integral equations, Higher Education Press, Beijing; Springer, Heidelberg (2011)
-
[58]
S. Wei, W. Chen, Y. Zhang, H. Wei, R. M. Garrard, A local radial basis function collocation method to solve the variableorder time fractional diffusion equation in a two-dimensional irregular domain, Numer. Methods Partial Differ. Equ., 34 (2018), 1209–1223
-
[59]
J. A. C. Weideman, Algorithms for parameter selection in the Weeks method for inverting the Laplace transform, SIAM J. Sci. Comput., 21 (1999), 111–128
-
[60]
G. Yao, Z. Yu, A localized meshless approach for modeling spatial-temporal calcium dynamics in ventricular myocytes, Int. J. Numer. Methods Biomed. Eng., 28 (2012), 187–204
-
[61]
A. Younus, M. Asif, U. Atta, T. Bashir, T. Abdeljawad, Applications of fuzzy conformable Laplace transforms for solving fuzzy conformable differential equations, Soft Comput., 27 (2023), 8583–8597