Ordered constraint semigroups: a novel class of algebraic systems
Volume 37, Issue 2, pp 201--213
https://dx.doi.org/10.22436/jmcs.037.02.05
Publication Date: September 25, 2024
Submission Date: September 04, 2023
Revision Date: August 01, 2024
Accteptance Date: August 19, 2024
Authors
P. Palakawong na Ayutthaya
- Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
N. Lekkoksung
- Division of Mathematics, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand.
Abstract
The distinguishing factor between semigroups and ordered semigroups lies in compatibility. Compatibility is a specific form of polymorphisms, an essential tool in clone theory. In this paper, we apply a generalized version of polymorphisms, known as constraint, to define a novel algebraic structure called ordered constraint semigroups. It turns out that ordered constraint semigroups are generalizations of semigroups. We define various ideals in ordered constraint semigroups and examine their fundamental properties. Specifically, we investigate their generated forms and explore the relationships among these ideals. Moreover, we focus on the intersection property of quasi-ideals in ordered constraint semigroups.
Share and Cite
ISRP Style
P. Palakawong na Ayutthaya, N. Lekkoksung, Ordered constraint semigroups: a novel class of algebraic systems, Journal of Mathematics and Computer Science, 37 (2025), no. 2, 201--213
AMA Style
Palakawong na Ayutthaya P. , Lekkoksung N. , Ordered constraint semigroups: a novel class of algebraic systems. J Math Comput SCI-JM. (2025); 37(2):201--213
Chicago/Turabian Style
Palakawong na Ayutthaya, P. , Lekkoksung, N. . "Ordered constraint semigroups: a novel class of algebraic systems." Journal of Mathematics and Computer Science, 37, no. 2 (2025): 201--213
Keywords
- Ordered semigroups
- constraints
- ordered constraint semigroups
- ideals
MSC
References
-
[1]
M. A. Ansari, M. R. Khan, J. P. Kaushik, A note on (m, n) quasi-ideals in semigroups, Int. J. Math. Anal. (Ruse), 3 (2009), 1853–1858
-
[2]
Aziz-Ul-Hakim, H. Khan, I. Ahmad, A. Khan, Fuzzy Bipolar Soft Quasi-ideals in Ordered Semigroups, Punjab Univ. J. Math. (Lahore), 54 (2022), 375–409
-
[3]
J. Bulín, A. Krokhin, J. Opršal, Algebraic approach to promise constraint satisfaction, In: STOC’19—Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, (2019), 602–613
-
[4]
M. Couceiro, S. Foldes, On closed sets of relational constraints and classes of functions closed under variable substitutions, Algebra Universalis, 54 (2005), 149–165
-
[5]
M. Couceiro, E. Lehtonen, Galois theory for sets of operations closed under permutation, cylindrification, and composition, Algebra Universalis, 67 (2012), 273–297
-
[6]
B. Davvaz, R. Chinram, S. Lekkoksung, N. Lekkoksung, Characterizations of generalized fuzzy ideals in ordered semigroups, J. Intell. Fuzzy Syst., 45 (2023), 2367–2380
-
[7]
E. H. Hamouda, Soft ideals in ordered semigroups, Rev. Un. Mat. Argentina, 58 (2017), 85–94
-
[8]
J. M. Howie, Fundamentals of Semigroup Theory, The Clarendon Press, Oxford University Press, New York (1995)
-
[9]
Y. B. Jun, K. Tinpun, N. Lekkoksung, Exploring regularities of ordered semigroups through generalized fuzzy ideals, Int. J. Fuzzy Log. Intell. Syst., 24 (2024), 141–152
-
[10]
N. Kehayopulu, On regular duo ordered semigroups, Math. Japon., 37 (1992), 535–540
-
[11]
N. Kehayopulu, On regular, regular duo ordered semigroups, Pure Math. Appl., 5 (1994), 161–176
-
[12]
N. Kehayopulu, S. Lajos, G. Lepouras, A note on bi- and quasi-ideals of semigroups, ordered semigroups, Pure Math. Appl., 8 (1997), 75–81
-
[13]
S. Kerkhoff, R. Pöschel, F. M. Schneider, A Short Introduction to Clones, In: Proceedings of the Workshop on Algebra, Coalgebra and Topology (WACT 2013), Elsevier Sci. B. V., Amsterdam, 303 (2014), 107–120
-
[14]
A. Khan, M. Khan, S. Hussain, Intuitionistic fuzzy ideals in ordered semigroups, J. Appl. Math. Inform., 28 (2010), 311–324
-
[15]
S. Lekkoksung, A. Iampan, P. Julatha, N. Lekkoksung, Representations of ordered semigroups and their interconnection, J. Intell. Fuzzy Syst., 44 (2023), 6877–6884
-
[16]
S. Lekkoksung, A. Iampan, N. Lekkoksung, On ideal elements of partially ordered semigroups with the greatest element, Int. J. Innov. Comput. Inf. Control., 18 (2022), 1941–1955
-
[17]
N. Pippenger, Galois theory for minors of finite functions, Discrete Math., 254 (2002), 405–419
-
[18]
A. Sparks, On the number of clonoids, Algebra Universalis, 80 (2019), 10 pages
-
[19]
S. Thongrak, A. Iampan, Characterizations of ordered semigroups by the properties of their ordered (m, n) quasi-ideals, Palest. J. Math., 7 (2018), 299–306
-
[20]
N. Tiprachot, S. Lekkoksung, N. Lekkoksung, B. Pibaljommee, Regularities in terms of hybrid n-interior ideals and hybrid (m, n)-ideals of ordered semigroups, Int. J. Innov. Comput. Inf. Control,, 18 (2022), 1347–1362
-
[21]
N. Tiprachot, N. Lekkoksung, B. Pibaljommee, On regularities of ordered semigroups, Asian-Eur. J. Math., 15 (2022), 13 pages
-
[22]
N. Tiprachot, S. Lekkoksung, B. Pibaljommee, N. Lekkoksung, Hybrid n-Interior Ideals and Hybrid (m, n)-Ideals in Ordered Semigroups, Fuzzy Inf. Eng., 15 (2023), 128–148
-
[23]
N. Wattanasiripong, N. Lekkoksung, S. Lekkoksung, On tripolar fuzzy ideals in ordered semigroups, J. Appl. Math. Inform., 41 (2023), 133–154