Oscillation analysis of a forced fractional order sum-difference equations
Authors
J. Alzabut
- Department of Mathematics and Sciences, Prince Sultan University, 11586 Riyadh, Saudi Arabia.
- Department of Industrial Engineering, OSTIM Technical University, Ankara 06374, Türkiye.
A. George Maria Selvam
- Department of Mathematics, Sacred Heart College, Tirupattur-635601, Tamil Nadu, India.
R. Janagaraj
- Department of Mathematics, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore-641021, Tamil Nadu, India.
Abstract
This paper contributes some new outcomes about the oscillation of a forced fractional order sum-difference equation of the form
\[\Delta^\beta y(\iota)+\sum\limits_{\varkappa=a}^{\iota-1}\mathbb{T}(\iota,\varkappa)\varPsi(\varkappa,y(\varkappa))=\varepsilon(\iota),\ 0<\beta<1,\ \iota\in\mathbb{N}_a,\]
with $\Delta^{\beta-1}y(0)=y_0\in\mathbb{R}$. Here $\mathbb{T},\varPsi , \varepsilon$ are well-defined functions along with continuity and $\Delta^\beta$ and $\Delta^{\beta-1}$ represent the Riemann-Liouville (R-L) fractional order difference and sum operators, respectively. Suitable examples are delivered to clarify the strength of the theoretical consequences.
Share and Cite
ISRP Style
J. Alzabut, A. George Maria Selvam, R. Janagaraj, Oscillation analysis of a forced fractional order sum-difference equations, Journal of Mathematics and Computer Science, 37 (2025), no. 2, 214--225
AMA Style
Alzabut J., George Maria Selvam A., Janagaraj R., Oscillation analysis of a forced fractional order sum-difference equations. J Math Comput SCI-JM. (2025); 37(2):214--225
Chicago/Turabian Style
Alzabut, J., George Maria Selvam, A., Janagaraj, R.. "Oscillation analysis of a forced fractional order sum-difference equations." Journal of Mathematics and Computer Science, 37, no. 2 (2025): 214--225
Keywords
- Fractional difference equations
- oscillation
- Riemann-Liouville fractional difference
- Caputo fractional difference
- forcing term
MSC
References
-
[1]
B. Abdalla, K. Abodayeh, T. Abdeljawad, J. Alzabut, New oscillation criteria for forced nonlinear fractional difference equations, Vietnam J. Math., 45 (2017), 609–618
-
[2]
T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611
-
[3]
S. Ahmed, A. T. Azar, M. Tounsi, I. K. Ibraheem, Adaptive Control Design for Euler–Lagrange Systems Using Fixed- Time Fractional Integral Sliding Mode Scheme, Fractal Fract., 7 (2023), 1–20
-
[4]
J. O. Alzabut, T. Abdeljawad, Sufficient conditions for the oscillation of nonlinear fractional difference equations, J. Fract. Calc. Appl., 5 (2014), 177–187
-
[5]
J. Alzabut, T. Abdeljawad, H. Alrabaiah, Oscillation criteria for forced and damped nable fractional difference equations, J. Comput. Anal. Appl., 24 (2018), 1387–1394
-
[6]
J. Alzabut, V. Muthulakshmi, A. Özbekler, H. Adıgüzel, On the Oscillation of nonlinear fractional difference equations with damping, Mathematics, 7 (2019), 1–14
-
[7]
F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Difference Equ., 2 (2007), 165–176
-
[8]
F. M. Atıcı, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., 2009 (2009), 12 pages
-
[9]
F. M. Atici, P.W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc., 137 (2009), 981–989
-
[10]
F. M. Atıcı, S. ¸Sengül, Modeling with fractional difference equations, J. Math. Anal. Appl., 369 (2010), 1–9
-
[11]
D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, New Jersey (2012)
-
[12]
N. R. O. Bastos, D. F. M. Torres, Combine Delta-Nabla sum operator in discrete fractional calculus, Commun. Frac. Calc., 1 (2010), 41–47
-
[13]
G. E. Chatzarakis, A. G. M. Selvam, R. Janagaraj, M. Douka, Oscillation theorems for certain forced nonlinear discrete fractional order equations, Commun. Math. Appl., 10 (2019), 763–772
-
[14]
G. E. Chatzarakis, G. M. Selvam, R. Janagaraj, G. N. Miliaras, Oscillation criteria for a class of nonlinear discrete fractional order equations with damping term, Math. Slovaca, 70 (2020), 1165–1182
-
[15]
J. B. Díaz, T. J. Osler, Differences of fractional order, Math. Comp., 28 (1974), 185–202
-
[16]
A. Dzieli ´ nski, D. Sierociuk, Fractional Order Model of Beam Heating Process and Its Experimental Verification, Springer, New York (2010)
-
[17]
S. N. Elaydi, An introduction to difference equations, Springer-Verlag, New York (1996)
-
[18]
G. H. Hardy, J. E. Littlewood, G Pólya, Inequalities, Cambridge University Press, Cambridge (1952)
-
[19]
M. T. Holm, The theory of discrete fractional calculus: Development and application, ProQuest LLC, Ann Arbor, MI (2011)
-
[20]
Z. A. Khan, F. Jarad , A. Khan, H. Khan, Nonlinear discrete fractional sum inequalities related to the theory of discrete fractional calculus with applications, Adv. Differ. Equ., 2021 (2021),
-
[21]
B. Kuttner, On differences of fractional order, Proc. London Math. Soc. (3), 7 (1957), 453–466
-
[22]
W. Li, W. Sheng, P. Zhang, Oscillatory properties of certain nonlinear fractional nabla difference equations, J. Appl. Anal. Comput., 8 (2018), 1910–1918
-
[23]
I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA (1999)
-
[24]
A. G. M. Selvam, J. Alzabut, R. Janagaraj, H. Adiguzel, Oscillation analysis for nonlinear discrete fractional order delay and neutral equations with forcing term, Dyn. Syst. Appl., 29 (2020), 327–342
-
[25]
A. G. M. Selvam, M. Jacintha, R. Janagaraj, Oscillation theorems for a class of forced nonlinear discrete equations of fractional order with damping term, AIP Conf. Proc., 2246 (2020), 1–7
-
[26]
A. G. M. Selvam, M. Jacintha, R. Janagaraj, Existence of nonoscillatory solutions of nonlinear neutral delay difference equation of fractional order, Adv. Math.: Sci. J., 9 (2020), 4971–4983
-
[27]
A. G. M. Selvam, R. Janagaraj, Oscillation theorems for damped fractional order difference equations, AIP Conf. Proc., 2095 (2019), 1–7
-
[28]
A. G. M. Selvam, R. Janagaraj, Oscillation criteria of a class of fractional order damped difference equations, Int. J. Appl. Math., 32 (2019), 433–441
-
[29]
A. G. M. Selvam, R. Janagaraj, New oscillation criteria for discrete fractional order forced nonlinear equations, J. Phys.: Conf. Ser., 1597 (2020), 1–8