The Appell sequences of fractional type
Authors
S. Diaz
- Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Barranquilla, Colombia.
Abstract
In the article, we explore a form of generalization of Appell polynomials stemming from fractional differential operators within the classical sense of Caputo and Riemann-Liuoville. To ascertain its generating function, we used the Mittag-Leffler function. Additionally, we propose a determinant form for this novel sequence family and derive general properties thereof.
Share and Cite
ISRP Style
S. Diaz, The Appell sequences of fractional type, Journal of Mathematics and Computer Science, 37 (2025), no. 2, 226--235
AMA Style
Diaz S., The Appell sequences of fractional type. J Math Comput SCI-JM. (2025); 37(2):226--235
Chicago/Turabian Style
Diaz, S.. "The Appell sequences of fractional type." Journal of Mathematics and Computer Science, 37, no. 2 (2025): 226--235
Keywords
- The Appell polynomials
- Caputo operator
- Riemann-Liouville operator
- Mittag-Leffler function
MSC
References
-
[1]
L. Abadias, P. J. Miana, A subordination principle on Wright functions and regularized resolvent families, J. Funct. Spaces, 2015 (2015), 9 pages
-
[2]
T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York-Heidelberg (1998)
-
[3]
P. Appell, Sur une classe de polynômes, Ann. Sci. École Norm. Sup. (2), 9 (1880), 119–144
-
[4]
E. G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal., 3 (2000), 213–230
-
[5]
E. G. Bazhlekova, Fractional evolution equations in Banach spaces, Ph.D Thesis, Eindhoven University of Technology, Eindhoven (2001)
-
[6]
D. Caratelli, P. Natalini, P. E. Ricci, Fractional Bernoulli and Euler Numbers and Related Fractional Polynomials—A Symmetry in Number Theory, Symmetry, 15 (2023), 13 pages
-
[7]
I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Elsevier/Academic Press, Amsterdam (2007)
-
[8]
H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011 (2011), 51 pages
-
[9]
N. A. Khan, O. I. Khalaf, C. A. T. Romero, M. Sulaiman, M. A. Bakar, Application of Euler neural networks with soft computing paradigm to solve nonlinear problems arising in heat transfer, Entropy, 23 (2021), 44 pages
-
[10]
K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York (1993)
-
[11]
S. Nemati, D. F. M. Torres, Application of Bernoulli Polynomials for Solving Variable-Order Fractional Optimal Control- Affine Problems, Axioms, 9 (2020), 18 pages
-
[12]
J. Peng, K. Li, A note on property of the Mittag-Leffler function, J. Math. Anal. Appl., 370 (2010), 635–638
-
[13]
P. E. Ricci, R. Srivastava, D. Caratelli, Laguerre-Type Bernoulli and Euler Numbers and Related Fractional Polynomials, Mathematics, 12 (2024), 16 pages