The moving least square method for solving the time fractional partial integro-differential equation of Volterra type and its convergence analysis
Authors
S. Elbostani
- MISI Laboratory, Faculty of Sciences and Technology, Hassan \(1^{\rm er}\) University, Settat, Morocco.
A. Mohib
- Laboratoire LMAI, ENS de Casablanca, Hassan II university of Casablanca, B.P. 50069, Ghandi Casablanca, Morocco.
R. El Jid
- MISI Laboratory, Faculty of Sciences and Technology, Hassan \(1^{\rm er}\) University, Settat, Morocco.
A. Rachid
- Laboratoire LMAI, ENS de Casablanca, Hassan II university of Casablanca, B.P. 50069, Ghandi Casablanca, Morocco.
Z. El Majouti
- MISI Laboratory, Faculty of Sciences and Technology, Hassan \(1^{\rm er}\) University, Settat, Morocco.
Abstract
In this paper, the moving least square (MLS) approximation is implemented for the numerical solution of time fractional partial integro-differential equation (TFPIDE) on a bounded domain. To establish the scheme, we apply the finite difference scheme to approximate the time Caputo fractional derivative, and we employ the composite trapezoidal quadrature rule for estimating integrals. This approach is very convenient for solving TFPIDE since it does not require any need for mesh connectivity. Then, the problem solving turns into solution of a linear system. The applicability and the validity of this method is investigated. Furthermore, the error estimate of the proposed method is provided. Finally, several numerical problems are solved which confirmed the theoretical findings.
Share and Cite
ISRP Style
S. Elbostani, A. Mohib, R. El Jid, A. Rachid, Z. El Majouti, The moving least square method for solving the time fractional partial integro-differential equation of Volterra type and its convergence analysis, Journal of Mathematics and Computer Science, 37 (2025), no. 2, 236--260
AMA Style
Elbostani S., Mohib A., El Jid R., Rachid A., El Majouti Z., The moving least square method for solving the time fractional partial integro-differential equation of Volterra type and its convergence analysis. J Math Comput SCI-JM. (2025); 37(2):236--260
Chicago/Turabian Style
Elbostani, S., Mohib, A., El Jid, R., Rachid, A., El Majouti, Z.. "The moving least square method for solving the time fractional partial integro-differential equation of Volterra type and its convergence analysis." Journal of Mathematics and Computer Science, 37, no. 2 (2025): 236--260
Keywords
- Fractional partial integro-differential equation (FPIDE)
- moving least squares (MLS)
- Caputo fractional derivative
- convergence analysis
MSC
- 26A33
- 35R09
- 45D05
- 45K05
- 65A05
- 65N35
References
-
[1]
M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. T. Silva, Computing and rendering point set surfaces, IEEE Trans. Vis. Comput. Graph., 9 (2003), 3–15
-
[2]
M. G. Armentano, Error estimates in Sobolev spaces for moving least square approximations, SIAM J. Numer. Anal., 39 (2001), 38–51
-
[3]
M. G. Armentano, R. G. Durán, Error estimates for moving least square approximations, Appl. Numer. Math., 37 (2001), 397–416
-
[4]
A. G. Atta, Y. H. Youssri, Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear timefractional partial integro-differential equation with a weakly singular kernel, Comput. Appl. Math., 41 (2022), 19 pages
-
[5]
D. Baleanu, S. Arshad, A. Jajarmi, W. Shokat, F. Akhavan Ghassabzade, M. Wali, Dynamical behaviours and stability analysis of a generalized fractional model with a real case study, J. Adv. Res., 48 (2023), 157–173
-
[6]
D. Baleanu, M. Hasanabadi, A. Mahmoudzadeh Vaziri, A. Jajarmi, A new intervention strategy for an HIV/AIDS transmission by a general fractional modelling and an optimal control approach, Chaos Solitons Fractals, 167 (2023),
-
[7]
T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Eng., 139 (1996), 3–47
-
[8]
R. L. Bagley, R. A. Calico, Fractional order state equations for the control of viscoelasticallydamped structures, J. Guid. Control Dyn., 14 (1991), 304–311
-
[9]
O. Defterli, D. Baleanu, A. Jajarmi, S. S. Sajjadi, N. Alshaikh, J. H. Asad, Fractional treatment: an accelerated massspring system, Rom. J. Phys., 74 (2022), 1–13
-
[10]
K. Diethelm, The analysis of fractional differential equations, Springer-Verlag, Berlin (2010)
-
[11]
Z. El Majouti, R. El Jid, A. Hajjaj, Numerical solution of two-dimensional Fredholm-Hammerstein integral equations on 2D irregular domains by using modified moving least-square method, Int. J. Comput. Math., 98 (2021), 1574–1593
-
[12]
Z. El Majouti, R. El Jid, A. Hajjaj, Solving Two-dimensional Linear and Nonlinear Mixed Integral Equations Using Moving Least Squares and Modified Moving Least Squares Methods, IAENG Int. J. Appl. Math., 51 (2021), 57–65
-
[13]
Z. El Majouti, R. El Jid, A. Hajjaj, Numerical solution for three-dimensional nonlinear mixed Volterra-Fredholm integral equations via modified moving least-square method, Int. J. Comput. Math., 99 (2022), 1849–1867
-
[14]
F. Fakhar-Izadi, Fully spectral-Galerkin method for the one- and two-dimensional fourth-order time-fractional partial integro-differential equations with a weakly singular kernel, Numer. Methods Partial Differ. Equ.,, 38 (2022), 160–176
-
[15]
F. Ge, Y. Chen, C. Kou, Regional analysis of time-fractional diffusion processes, Springer, Cham (2018)
-
[16]
M. H. Heydari, H. Laeli Dastjerdi, M. Nili Ahmadabadi, An efficient method for the numerical solution of a class of nonlinear fractional Fredholm integro-differential equations, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 165–173
-
[17]
A. Jajarmi, S. Arshad, D. Baleanu, A new fractional modelling and control strategy for the outbreak of dengue fever, Phys. A, 535 (2019), 14 pages
-
[18]
A. Jajarmi, B. Ghanbari, D. Baleanu, A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence, Chaos, 29 (2019), 15 pages
-
[19]
P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares methods, Math. Comp., 37 (1981), 141–158
-
[20]
D. Levin, The Approximation Power of Moving Least-Squares, Math. Comp., 67 (1998), 1517–1531
-
[21]
X. Li, S. Li, On the stability of the moving least squares approximation and the element-free Galerkin method, Comput. Math. Appl., 72 (2016), 1515–1531
-
[22]
G. R. Liu, Y. T. Gu, An Introduction to Meshfree Methods and Their Programming, Springer, New York (2005)
-
[23]
Z. Luo, X. Zhang, S. Wang, L. Yao, Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme, Chaos Solitons Fractals, 161 (2022), 8 pages
-
[24]
D. Mirzaei, Analysis of moving least squares approximation revisited, J. Comput. Appl. Math., 282 (2015), 237–250
-
[25]
M. Mirzazadeh, M. Eslami, B. S. Ahmed, A. Biswas, Dynamics of Population Growth Model With Fractional Temporal Evolution, Life Sci. J., 11 (2014), 224–227
-
[26]
H. K. Pathak, An introduction to nonlinear analysis and fixed point theory, Springer, Singapore (2018)
-
[27]
I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA (1999)
-
[28]
H. Ren, K. Pei, L. Wang, Error analysis for moving least squares approximation in 2D space, Appl. Math. Comput., 238 (2014), 527–546
-
[29]
S. Santra, J. Mohapatra, A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type, J. Comput. Appl. Math., 400 (2022), 13 pages
-
[30]
D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 23rd ACM national conference, (1968), 517–524
-
[31]
W. Y. Tey, N. A. C. Sidik, Y. Asako, M. W Muhieldeen, O. Afshar, Moving Least Squares Method and its Improvement: A Concise Review, J. Appl. Comput. Mech., 7 (2021), 883–889
-
[32]
M. Uddin, S. Haq, RBFs approximation method for time fractional partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4208–4214
-
[33]
C. Zuppa, Error estimates for moving least square approximations, Bull. Braz. Math. Soc. (N.S.), 34 (2003), 231–249
-
[34]
C. Zuppa, Good quality point sets and error estimates for moving least square approximations, Appl. Numer. Math., 47 (2003), 575–585