Control analysis of Nilaparvata Lugens with Wolbachia using sterile insect techniques
Authors
R. Chinnathambi
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamilnadu-600 127, India.
F. A. Rihan
- Department of Mathematical Sciences, College of Science, United Arab Emirates University, Al-Ain, 15551, UAE.
G. P. Balakrishnan
- Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu 626 005, India.
Ch. Pichani
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamilnadu-600 127, India.
Abstract
The ecologist and farmers have both greatly benefited from the modeling and control of {\it Nilaparvata Lugens} (N. Lugens) populations in rice fields. This work describes a sex-structured wild Lugens population and male Lugens infected with w-Stri (Wolbachia). The w-Stri type Wolbachia can naturally control wild Lugens, as shown in a test done in the laboratory. Male Lugens infected with w-Stri produce larger amounts of cytoplasmic incompatibility, when they mate with wild female Lugens. Using the time-dependent control parameter of the continuous releasing rate of male Lugens infected with w-Stri, we create an optimal control problem. By analyzing the necessary and sufficient conditions, we investigate the optimality. Furthermore, we explore the sufficient conditions for the elimination of wild Lugens via periodic impulsive releases of male Lugens infected with w-Stri. Numerical simulations validate the theoretical conclusions.
Share and Cite
ISRP Style
R. Chinnathambi, F. A. Rihan, G. P. Balakrishnan, Ch. Pichani, Control analysis of Nilaparvata Lugens with Wolbachia using sterile insect techniques, Journal of Mathematics and Computer Science, 37 (2025), no. 3, 261--273
AMA Style
Chinnathambi R., Rihan F. A., Balakrishnan G. P., Pichani Ch., Control analysis of Nilaparvata Lugens with Wolbachia using sterile insect techniques. J Math Comput SCI-JM. (2025); 37(3):261--273
Chicago/Turabian Style
Chinnathambi, R., Rihan, F. A., Balakrishnan, G. P., Pichani, Ch.. "Control analysis of Nilaparvata Lugens with Wolbachia using sterile insect techniques." Journal of Mathematics and Computer Science, 37, no. 3 (2025): 261--273
Keywords
- Feedback control
- optimal control
- sterile insect technique
- Lugens
- Wolbachia
MSC
References
-
[1]
F. A. Basir, A. Banerjee, S. Ray, Role of farming awareness in crop pest management—a mathematical model, J. Theoret. Biol., 461 (2019), 59–67
-
[2]
P.-A. Bliman, D. Cardona-Salgado, Y. Dumont, O. Vasilieva, Implementation of control strategies for sterile insect techniques, Math. Biosci., 314 (2019), 43–60
-
[3]
P.-A. Bliman, A feedback control perspective on biological control of dengue vectors by Wolbachia infection, Eur. J. Control, 59 (2021), 188–206
-
[4]
D. G. Botterell, K. G. schoenly, Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high-yielding rice-production in tropical Asia, J. Asia. Pac. Entomol., 15 (2012), 122–140
-
[5]
P. Q. Cabauatan, R. C. Cabunagan, I. R. choi, Rice viruses transmitted by the brown planthopper Nilaparvatha lugens Stal, Planthoppers: New threats to the sustainability of intensive rice production systems in Asia, International Rice Research Institute, (2009), 357–368
-
[6]
A. Columbu, R. Díaz Fuentes, S. Frassu, Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction– repulsion chemotaxis models with logistics, Nonlinear Anal. Real World Appl., 79 (2024), 14 pages
-
[7]
X. Dai, Q. Quan, J. Jiao, Modelling and analysis of periodic impulsive releases of the Nilaparvata lugens infected with wStri-Wolbachia, J. Biol. Dyn., 17 (2023), 28 pages
-
[8]
W. Du, C. Hu, C. Yu, J. Tong, J. Qiu, S. Zhang, Y. Liu, Comparison between pupal and adult X-ray radiation, designed for the sterile insect technique for Aedes albopictus control, Acta Trop., 199 (2019), 1–24
-
[9]
Y. Dumont, I. V. Yatat–Djeumen, Sterile insect technique with accidental releases of sterile females. Impact on mosquitoborne diseases control when viruses are circulating, Math. Biosci., 343 (2022), 26 pages
-
[10]
V. A. Dyck, J. Hendrichs, A. S. Robinson, Sterile insect technique: principles and practice in area-wide integrated pest management, Springer, Dordrecht, The Netherlands (2005)
-
[11]
J.-T. Gong, Y. Li, T.-P. Li, Y. Liang, L. Hu, D. Zhang, C.-Y. Zhou, C. Yang, X. Zhang, S.-S. Zha, X.-Z. Duan, L. A. Baton, X.-Y. Hong, A. A. Hoffmann, Z. Xi, Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection, Curr. Biol., 30 (2020), 4837–4845
-
[12]
L. Gouagna, J.-S. Dehecq, D. Fontenille, Y. Dumont, S. Boyer, Seasonal variation in size estimates of Aedes albopictus population based on standard mark-release-recapture experiments in an urban area on Reunion Island, Acta Trop., 143 (2015), 89–96
-
[13]
F. G. Horgan, B. S. Naik, E. H. Iswanto, M. L. P. Almazan, A. F. Ramal, C. C. Bernal, Responses by the brown planthopper, Nilaparvata lugens, to conspecific density on resistant and susceptible rice varieties, Entomol. Exp. Appl., 158 (2016), 284–294
-
[14]
J.-F. Ju, X.-L. Bing, D.-S. Zhao, Y. Guo, Z. Xi, A. A. Hoffmann, K.-J. Zhang, H.-J. Huang, J.-T. Gong, X. Zhang, X.-Y. Hong, Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers, ISME J., 14 (2020), 676–687
-
[15]
K. S. Kim, S. Kim, Il. H. Jung, Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics, Math. Comput. Simul., 149 (2018), 1–16
-
[16]
S. Kundu, H. J. Alsakaji, F. A. Rihan, S. Maitra, R. K. Upadhyay, Investigating the dynamics of a delayed stagestructured epidemic model with saturated incidence and treatment functions, Eur. Phys. J. Plus, 137 (2022),
-
[17]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[18]
Y. Li, X. Liu, A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population, J. Theoret. Biol., 448 (2018), 53–65
-
[19]
Z. Liu, T. Chen, T. Zhou, Analysis of impulse release of Wolbachia to control Nilaparvata lugens, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 23 pages
-
[20]
Z. Liu, T. Zhou, Wolbachia spreading dynamics in Nilaparvata lugens with two strains, Nonlinear Anal. Real World Appl., 62 (2021), 26 pages
-
[21]
M. Matsumura, Y. Suzuki, Direct and feeding-induced interactions between two rice planthoppers, Sogatella furcifera and Nilaparvata lugens: effects on dispersal capability and performance, Ecol. Entomol., 28 (2003), 174–182
-
[22]
P. Muthukumar, C. Rajivganthi, Approximate controllability of impulsive neutral stochastic functional differential system with state-dependent delay in Hilbert spaces, J. Control Theory Appl., 11 (2013), 351–358
-
[23]
H. Noda, Y. Koizumi, Q. Zhang, K. Deng, Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera, Insect Biochem. Mol. Biol., 31 (2001), 727–737
-
[24]
C. Rajivganthi, F. A. Rihan, Analysis and control of Aedes Aegypti mosquitoes using sterile-insect techniques with Wolbachia, Math. Biosci. Eng., 19 (2022), 11154–11171
-
[25]
F. A. Rihan, Delay Differential Equations and Applications to Biology, Springer, Singapore (2021)
-
[26]
T. Sathiyaraj, J. Wang, Controllability and stability of non-instantaneous impulsive stochastic multiple delays system, J. Optim. Theory Appl., 21 (2024), 995–1025
-
[27]
H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, American Mathematical Society, (1995)
-
[28]
M. Strugarek, H. Bossin, Y. Dumont, On the use of the sterile insect release technique to reduce or eliminate mosquito populations, Appl. Math. Model., 68 (2019), 443–470
-
[29]
S.-F. Wu, B. Zeng, C. Zheng, X.-C. Mu, Y. Zhang, J. Hu, S. Zhang, C.-F. Gao, J.-L. Shen, The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012–2016, Sci. Rep., 8 (2018), 1–11
-
[30]
S. Xue, M. Li, J. Ma, J. Li, Sex-structured wild and sterile mosquito population models with different release strategies, Math. Biosci. Eng., 16 (2019), 1313–1333
-
[31]
K. J. Zhang, X. Han, X. Y. Hong, Various infection status and molecular evidence for horizontal transmission and recombination of Wolbachia and Cardinium among rice planthoppers and related species, Insect Sci., 20 (2013), 329–344
-
[32]
K.-J. Zhang, W.-C. Zhu, X. Rong, Y.-K. Zhang, X.-L. Ding, J. Liu, D.-S. Chen, Y. Du, X.-Y. Hong, The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus: Conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes, BMC Genomics, 14 (2023), 1–12
-
[33]
B. Zheng, J. Yu, J. Li, Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression, SIAM J. Appl. Math., 81 (2021), 718–740