New type of inequalities involving differentiable \(h\)-convexity with applications
Volume 37, Issue 3, pp 287--296
https://dx.doi.org/10.22436/jmcs.037.03.03
Publication Date: October 04, 2024
Submission Date: August 05, 2024
Revision Date: August 30, 2024
Accteptance Date: September 06, 2024
Authors
O. B. Almutairi
- Department of Mathematics, University of Hafr Al-Batin, Hafr Al-Batin, 31991, Saudi Arabia.
Abstract
In this article, we explore the type of integral inequalities using Hölder inequality together with the class of \(h\)-convexity.
Also, we present some trapezoid-type inequalities for the class of mappings whose second derivative in absolute value at certain power is \(h\)-convex. The applications to special means of some results obtained are equally discussed.
In some selected cases, several previous results were generalized.
Share and Cite
ISRP Style
O. B. Almutairi, New type of inequalities involving differentiable \(h\)-convexity with applications, Journal of Mathematics and Computer Science, 37 (2025), no. 3, 287--296
AMA Style
Almutairi O. B., New type of inequalities involving differentiable \(h\)-convexity with applications. J Math Comput SCI-JM. (2025); 37(3):287--296
Chicago/Turabian Style
Almutairi, O. B.. "New type of inequalities involving differentiable \(h\)-convexity with applications." Journal of Mathematics and Computer Science, 37, no. 3 (2025): 287--296
Keywords
- \(h\)-Convex function
- integral inequality
- Hölder inequality
- power-mean inequality
MSC
References
-
[1]
R. P. Agarwal, M. Bohner, M. Özbekler, Lyapunov inequalities and applications, Springer, Cham (2021)
-
[2]
M. A. Ali, H. Budak, M. Feˇckan, S. Khan, A new version of q-Hermite-Hadamard’s midpoint and trapezoid type inequalities for convex functions, Math. Slovaca, 73 (2023), 369–386
-
[3]
B. Bayraktar, P. Kórus, J. E. Nápoles Valdés, New Jensen-type integral inequalities via modified (h,m)-convexity and their applications, Acta Math. Univ. Comenian. (N.S.), 92 (2023), 213–223
-
[4]
B. Bayraktar, J. E. Nápoles, F. Rabossi, Some refinements of the Hermite-Hadamard inequality with the help of weighted integrals, Ukrainian Math. J., 75 (2023), 842–860
-
[5]
B. Bayraktar, J. E. Nápoles Valdés, Integral inequalities for mappings whose derivatives are (h,m, s)-convex modified of second type via Katugampola integrals, An. Univ. Craiova Ser. Mat. Inform., 49 (2022), 371–383
-
[6]
B. Benaissa, M. Z. Sarikaya, Some Hardy-type integral inequalities involving functions of two independent variables, Positivity, 25 (2021), 853–866
-
[7]
D. D. Demir, G. ¸Sanal, Some Perturbed Trapezoid Inequalities for n-times Differentiable Strongly log-Convex Functions, Celal Bayar Univ. J. Sci., 18 (2022), 355–363
-
[8]
S. S. Dragomir„ R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95
-
[9]
I. ˙I¸scan, T. Toplu, F. Yetgin, Some new inequalities on generalization of Hermite-Hadamard and Bullen type inequalities, applications to trapezoidal and midpoint formula, Kragujevac J. Math., 45 (2021), 647–657
-
[10]
M. A. Latif, A. Kashuri, S. Hussain, M. R. Delavar, Trapezium-type inequalities for h-preinvex functions and their applications, Filomat, 36 (2022), 3393–3404
-
[11]
D. S. Mitrinovi´c, J. E. Peˇcari´c, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers Group, Dordrecht (1993)
-
[12]
H. Kara, S. Erden, H. Budak, Hermite-Hadamard, trapezoid and midpoint type inequalities involving generalized fractional integrals for convex functions, Sahand Commun. Math. Anal., 20 (2023), 85–107
-
[13]
P. Kórus, J. J. E. Nápoles Valdés, On some integral inequalities for (h,m)-convex functions in a generalized framework, Carpathian Math. Publ., 15 (2023), 137–149
-
[14]
P. Kórus, J. J. E. Nápoles Valdés, Some Hermite–Hadamard inequalities involving weighted integral operators via (h, s, m)-convex functions, TWMS J. of Apl. Eng. Math., 13 (2023), 1461–1471
-
[15]
M. Rostamian Delavar, On Fejér’s inequality: generalizations and applications, J. Inequal. Appl., 2023 (2023), 28 pages
-
[16]
M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., 2 (2008), 335–341
-
[17]
J. E. N. Valdés, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne’s thread or Charlotte’s Spiderweb?, Adv. Math. Models Appl., 25 (2020), 176–191
-
[18]
S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311
-
[19]
Ç. Yıldız, B. Yergöz, A. Yergöz, On new general inequalities for s-convex functions and their applications, J. Inequal. Appl., 2023 (2023), 16 pages
-
[20]
Ç. Yıldız, A. Yergöz, An investigation into inequalities obtained through the new lemma for exponential type convex functions, Filomat, 37 (2023), 5149–5163
-
[21]
D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 14 pages
-
[22]
S.-S. Zhou, G. Farid, A. Ahmad, Fractional versions of Minkowski-type integral inequalities via unified Mittag-Leffler function, Adv. Contin. Discrete Models, 2022 (2022), 10 pages