Existence and uniqueness theorems for nonlinear coupled boundary value problem of the \(\mathcal{ABC}\) fractional differential equation
Authors
G. Janardhanan
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India.
G. Mani
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India.
D. Santina
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
N. Mlaiki
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.
Abstract
In this paper, we study existence and uniqueness of solutions for a new systems of nonlinear coupled boundary value problem of the \(\mathcal{ABC}\) fractional differential equation. By applying the Banach's
fixed point theorem and Krasnoselskii's fixed point theorem, the existence of solutions is obtained. Further, the provided problem Ulam-Hyers (\(\mathcal{UH}\)) and generalized Ulam-Hyers (\(\mathcal{GUH}\)) stability are both investigated. The result obtained in this work are well illustrated with the aid of examples.
Share and Cite
ISRP Style
G. Janardhanan, G. Mani, D. Santina, N. Mlaiki, Existence and uniqueness theorems for nonlinear coupled boundary value problem of the \(\mathcal{ABC}\) fractional differential equation, Journal of Mathematics and Computer Science, 37 (2025), no. 3, 297--318
AMA Style
Janardhanan G., Mani G., Santina D., Mlaiki N., Existence and uniqueness theorems for nonlinear coupled boundary value problem of the \(\mathcal{ABC}\) fractional differential equation. J Math Comput SCI-JM. (2025); 37(3):297--318
Chicago/Turabian Style
Janardhanan, G., Mani, G., Santina, D., Mlaiki, N.. "Existence and uniqueness theorems for nonlinear coupled boundary value problem of the \(\mathcal{ABC}\) fractional differential equation." Journal of Mathematics and Computer Science, 37, no. 3 (2025): 297--318
Keywords
- \(\mathcal{ABC}\) fractional differential equation
- boundary value problem
- existence and uniqueness
- \(\mathcal{UH}\) stability
- generalized \(\mathcal{UH}\) stability
- fixed point theorem
MSC
References
-
[1]
T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 11 pages
-
[2]
T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Differ. Equ., 2016 (2016), 18 pages
-
[3]
T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27
-
[4]
M. S. Abdo, T. Abdeljawad, K. D. Kucche, M. A. Alqudah, S. M. Ali, M. B. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 2021 (2021), 17 pages
-
[5]
O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002), 368–379
-
[6]
B. Ahmad, S. K. Ntouyas, A. Alsaedi, Sequential fractional differential equations and inclusions with semi-periodic and nonlocal integro-multipoint boundary conditions, J. King Saud Univ.-Sci., 31 (2019), 184–193
-
[7]
I. Ahmed, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. A. Demba, Stability results for implicit fractional pantograph differential equations via -Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 21 pages
-
[8]
B. S. T. Alkahtani, Chua’s circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 547–551
-
[9]
M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of -Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 15 pages
-
[10]
M. A. Almalahi, S. K. Panchal, On the theory of -Hilfer nonlocal Cauchy problem, Zh. Sib. Fed. Univ. Mat. Fiz., 14 (2021), 159–175
-
[11]
S. K. Q. Al-Omari, D. Baleanu, Quaternion Fourier integral operators for spaces of generalized quaternions, Math. Methods Appl. Sci., 41 (2018), 9477–9484
-
[12]
O. A. Arqub, B. Maayah, Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos Solitons Fractals, 117 (2008), 117–124
-
[13]
O. A. Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Solitons Fractals, 125 (2019), 163–170
-
[14]
O. A. Arqub, B. Maayah, Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC—fractional Volterra integro-differential equations, Chaos Solitons Fractals, 126 (2019), 394–402
-
[15]
A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763
-
[16]
A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447–454
-
[17]
M. S. Aydogan, D. Baleanu, A. Mousalou, S. Rezapour, On high order fractional integro-differential equations including the Caputo-Fabrizio derivative, Bound. Value Probl., 2018 (2018), 15 pages
-
[18]
D. Baleanu, S. Rezapour, Z. Saberpour, On fractional integro-differential inclusions via the extended fractional Caputo- Fabrizio derivation, Bound. Value Probl., 2019 (2019), 17 pages
-
[19]
T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85–88
-
[20]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85
-
[21]
K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin (1985)
-
[22]
S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. Gómez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021),
-
[23]
M. A. Firoozjaee, H. Jafari, A. Lia, D. Baleanu, Numerical approach of Fokker-Planck equation with Caputo-Fabrizio fractional derivative using Ritz approximation, J. Comput. Appl. Math., 339 (2018), 367–373
-
[24]
G. N. Gumah, M. F. M. Naser, M. Al-Smadi, S. K. Al-Omari, Application of reproducing kernel Hilbert space method for solving second-order fuzzy Volterra integro-differential equations, Adv. Differ. Equ., 2018 (2018), 15 pages
-
[25]
Y. Guo, M. Chen, X.-B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021), 643–666
-
[26]
Y. Guo, X.-B. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1 < < 2, Bound. Value Probl., 2019 (2019), 18 pages
-
[27]
H. A. Hammad, H. Aydi, N. Maliki, Contributions of the fixed point technique to solve the 2D Volterra integral equations, Riemann-Liouville fractional integrals, and Atangana-Baleanu integral operators, Adv. Differ. Equ., 2021 (2021), 20 pages
-
[28]
H. A. Hammad, H. Aydi, M. Zayed, Involvement of the topological degree theory for solving a tripled system of multi-point boundary value problems, AIMS Math., 8 (2023), 2257–2271
-
[29]
H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 14 pages
-
[30]
H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Boundary Value Probl., 2022 (2022), 29 pages
-
[31]
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., River Edge (2000)
-
[32]
F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16–20
-
[33]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[34]
J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92
-
[35]
I. Podlubny, Fractional differential equations, Academic Press, San Diego (1999)
-
[36]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon (1993)