New oscillation criteria of fourth-order neutral noncanonical differential equations
Authors
M. S. Jayalakshmi
- Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603 203, Tamilnadu, India.
S. K. Thamilvanan
- Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603 203, Tamilnadu, India.
L. F. Iambor
- Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087, Oradea, Romania.
O. Bazighifan
- Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout, Yemen.
- Jadara Research Center, Jadara University, Irbid 21110, Jordan.
Abstract
The purpose of this paper is deal with the oscillatory behavior of solutions of neutral delay differential equations of fourth-order in noncanonical form.
We use a different techniques which significantly reduce the number of conditions assuring that all the solutions are oscillates. We provided two examples to demonstrate the power and relevance of our findings.
Share and Cite
ISRP Style
M. S. Jayalakshmi, S. K. Thamilvanan, L. F. Iambor, O. Bazighifan, New oscillation criteria of fourth-order neutral noncanonical differential equations, Journal of Mathematics and Computer Science, 37 (2025), no. 3, 319--329
AMA Style
Jayalakshmi M. S., Thamilvanan S. K., Iambor L. F., Bazighifan O., New oscillation criteria of fourth-order neutral noncanonical differential equations. J Math Comput SCI-JM. (2025); 37(3):319--329
Chicago/Turabian Style
Jayalakshmi, M. S., Thamilvanan, S. K., Iambor, L. F., Bazighifan, O.. "New oscillation criteria of fourth-order neutral noncanonical differential equations." Journal of Mathematics and Computer Science, 37, no. 3 (2025): 319--329
Keywords
- Noncanonical operator
- oscillation
- neutral differential equation
- fourth-order
MSC
References
-
[1]
R. P. Agarwal, O. Bazighifan, M. A. Ragusa, Nonlinear neutral delay differential equations of fourth-order: Oscillation of solutions, Entropy, 23 (2021), 10 pages
-
[2]
A. Al-Jaser, B. Qaraad, O. Bazighifan, L. F. Iambor, Second-Order Neutral Differential Equations with Distributed Deviating Arguments: Oscillatory Behavior, Mathematics, 11 (2023), 15 pages
-
[3]
B. Almarri, A. H. Ali, K. S. Al-Ghafri, A. Almutairi, O. Bazighifan, J. Awrejcewicz, Symmetric and Non-Oscillatory Characteristics of the Neutral Differential Equations Solutions Related to p-Laplacian Operators, Symmetry, 14 (2022), 8 pages
-
[4]
A. Almutairi, A. H. Ali, O. Bazighifan, L. F. Iambor, Oscillatory Properties of Fourth-Order Advanced Differential Equations, Mathematics, 11 (2023), 11 pages
-
[5]
M. A. Alomair, A. Muhib, On the oscillation of fourth-order canonical differential equation with several delays, AIMS Math., 9 (2024), 19997–20013
-
[6]
A. K. Alsharidi, A. Muhib, S. K. Elagan, Neutral differential equations of higher order in canonical form: Oscillation criteria, Mathematics, 11 (2023), 13 pages
-
[7]
S. A. Balatta, I. Hashim, A. S. Bataineh, E. S. Ismail, Oscillation criteria of fourth-order differential equations with delay terms, J. Funct. Spaces, 2022 (2022), 7 pages
-
[8]
M. Bartušek, Z. Došlá, Oscillations of fourth-order neutral differential equations with damping term, Math. Methods Appl. Sci., 44 (2021), 14341–14355
-
[9]
O. Bazighifan, On the oscillation of certain fourth-order differential equations with p-Laplacian like operator, Appl. Math. Comput., 386 (2020),
-
[10]
O. Bazighifan, A. H. Ali, F. Mofarreh, Y. N. Raffoul, Extended approach to the asymptotic behavior and symmetric solutions of advanced differential equations, Symmetry, 14 (2022), 11 pages
-
[11]
S. R. Grace, J. Džurina, I. Jadlovská, T. Li, On the oscillation of fourth-order delay differential equations, Adv. Diffe. Equ., 2019 (2019), 15 pages
-
[12]
I. Gy˝ori, G. Ladas, Oscillation theory of delay differential equations, The Clarendon Press, Oxford University Press, New York (1991)
-
[13]
J. K. Hale, Theory of functional differential equations, Springer-Verlag, New York-Heidelberg (1977)
-
[14]
N. Kilinc Gecer, P. Temtek, Oscillation criteria for fourth-order differential equations, J. Inst. Sci. Tech., 38 (2022), 109–116
-
[15]
G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, Marcel Dekker, New York (1987)
-
[16]
T. Li, B. Baculíková, J. Džurina, C. Zhang, Oscillation of fourth-order neutral differential equations with p-Laplacian like operators, Bound. Value Probl., 2014 (2014), 9 pages
-
[17]
S. K. Marappan, A. Almutairi, L. F.Iambor, O. Bazighifan, Oscillation of Emden–Fowler-type differential equations with non-canonical operators and mixed neutral terms, Symmetry, 15 (2023), 10 pages
-
[18]
O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, Oscillatory behavior of fourth-order differential equations with neutral delay, Symmetry, 12 (2020), 8 pages
-
[19]
A. Muhib, O. Moaaz, C. Cesarano, S. Askar, E. M. Elabbasy, Neutral differential equations of fourth-order: New asymptotic properties of solutions, Axioms, 11 (2022), 11 pages
-
[20]
G. Nithyakala, G. Ayyappan, J. Alzabut, E. Thandapani, Fourth-order nonlinear strongly non-canonical delay differential equations: new oscillation criteria via canonical transform, , 74 (2024), 115–126
-
[21]
M. N. O˘guztöreli, R. B. Stein, An analysis of oscillations in neuro-muscular systems, J. Math. Biol., 2 (1975), 87–105
-
[22]
G. Purushothaman, K. Suresh, E. Tunc, E. Thandapani, Oscillation criteria of fourth-order nonlinear semi-canonical neutral differential equations via a canonical tranfsform, Elect. J. Differ. Equ., 2023 (2023), 1–12
-
[23]
C. Trusdell, Rational Mechanics, Academic Press, New York (1983)