New comprehensive two subclasses related to Gregory numbers of analytic bi-univalent functions

Volume 37, Issue 3, pp 337--346 https://dx.doi.org/10.22436/jmcs.037.03.07
Publication Date: October 25, 2024 Submission Date: May 05, 2024 Revision Date: August 27, 2024 Accteptance Date: September 14, 2024

Authors

T. Al-Hawary - Department of Applied Science‎, ‎Ajloun College‎, Al Balqa‎ ‎Applied University‎, ‎Ajloun 26816, Jordan. - Jadara Research Center‎, Jadara University‎, Irbid 21110, Jordan. A. Amourah - Mathematics Education Program‎, ‎Faculty of Education and Arts‎, Sohar University, Sohar 3111, ‎Oman. - Applied Science Research Center‎, Applied Science Private University‎, Amman, Jordan. J. Salah - College of Applied and Health Sciences‎, A'Sharqiyah University, Post Box No‎. ‎42‎, ‎Post Code No‎. ‎400 Ibra, Sultanate of Oman. M. Al-khlyleh - Department of Applied Science‎, ‎Ajloun College‎, Al Balqa‎ ‎Applied University, Ajloun 26816, Jordan. B. A. Frasin - Faculty of Science‎, ‎Department of Mathematics‎, Al al-Bayt‎ ‎University, Mafraq, Jordan.


Abstract

‎In this paper‎, ‎using subordinations with the functions whose coefficients are Gregory‎ ‎numbers‎, ‎we present two novel subclasses \(\mathbf{\wp}_{\Pi}(\vartheta\)‎, ‎\(\gamma,\) \(\beta)\)‎, ‎and \(\mathbf{‎ ‎\mathcal{F}‎ ‎}_{\Pi}(\phi)\) within the bi-univalent function family‎. ‎We study the estimates‎ ‎\(\left\vert a_{2}\right\vert \) and \(\left\vert a_{3}\right\vert \) of the‎ ‎Maclaurin coefficients and the Fekete-Szego inequality regarding‎ ‎functions in every one of these two subclasses‎. ‎Following the originality of‎ ‎the characterizations and the proofs may encourage additional research on‎ ‎these kinds of similarly defined analytic bi-univalent function subclasses‎.


Share and Cite

  • Share on Facebook
  • Share on X
  • Share on LinkedIn
ISRP Style

T. Al-Hawary, A. Amourah, J. Salah, M. Al-khlyleh, B. A. Frasin, New comprehensive two subclasses related to Gregory numbers of analytic bi-univalent functions, Journal of Mathematics and Computer Science, 37 (2025), no. 3, 337--346

AMA Style

Al-Hawary T., Amourah A., Salah J., Al-khlyleh M., Frasin B. A., New comprehensive two subclasses related to Gregory numbers of analytic bi-univalent functions. J Math Comput SCI-JM. (2025); 37(3):337--346

Chicago/Turabian Style

Al-Hawary, T., Amourah, A., Salah, J., Al-khlyleh, M., Frasin, B. A.. "New comprehensive two subclasses related to Gregory numbers of analytic bi-univalent functions." Journal of Mathematics and Computer Science, 37, no. 3 (2025): 337--346


Keywords


MSC


References