Oscillation of \(3^{\text{rd}}\) order non-canonical delay differential equations of limited neutral coefficient
Volume 37, Issue 4, pp 395--405
https://dx.doi.org/10.22436/jmcs.037.04.04
Publication Date: November 02, 2024
Submission Date: July 26, 2024
Revision Date: September 01, 2024
Accteptance Date: September 10, 2024
Authors
K. Ramamoorthy
- Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
S. K. Thamilvanan
- Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
L. F. Iambor
- Department of Mathematics and computer science, University of Oradea, 1 University Street, 410087, Oradea, Romania.
Kh. S. Al-Ghafri
- University of Technology and Applied Science, P.O. BOX 14, Ibri 516, Oman.
O. Bazighifan
- Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout, Yemen.
- Jadara Research Center, Jadara University, Irbid 21110, Jordan.
Abstract
The main aim of this paper is to obtain new criteria for oscillating all solutions of second-order differential equations with distributed deviating arguments and superlinear neutral terms. Using the comparative and integral averaging techniques, we find new conditions for oscillation that generalize and add to some of the already found results. There are examples to show how important the main results are.
Share and Cite
ISRP Style
K. Ramamoorthy, S. K. Thamilvanan, L. F. Iambor, Kh. S. Al-Ghafri, O. Bazighifan, Oscillation of \(3^{\text{rd}}\) order non-canonical delay differential equations of limited neutral coefficient, Journal of Mathematics and Computer Science, 37 (2025), no. 4, 395--405
AMA Style
Ramamoorthy K. , Thamilvanan S. K. , Iambor L. F., Al-Ghafri Kh. S. , Bazighifan O., Oscillation of \(3^{\text{rd}}\) order non-canonical delay differential equations of limited neutral coefficient. J Math Comput SCI-JM. (2025); 37(4):395--405
Chicago/Turabian Style
Ramamoorthy, K. , Thamilvanan, S. K. , Iambor, L. F., Al-Ghafri, Kh. S. , Bazighifan, O.. "Oscillation of \(3^{\text{rd}}\) order non-canonical delay differential equations of limited neutral coefficient." Journal of Mathematics and Computer Science, 37, no. 4 (2025): 395--405
Keywords
- Neutral differential equation
- noncanonical
- third-order
- oscillation
MSC
References
-
[1]
R. P. Agarwal, M. Bohner, T. Li, C. Zhang, A Philos-type theorem for thirs-order nonlinear retarded dynamic equations, Appl. Math. Comput., 249 (2014), 527–531
-
[2]
B. Almarri, A. H. Ali, K. S. Al-Ghafri, A. Almutairi, O. Bazighifan, J. Awrejcewicz, Symmetric and Non-Oscillatory Characteristics of the Neutral Differential Equations Solutions Related to p-Laplacian Operators, Symmetry, 14 (2022), 8 pages
-
[3]
B. Almarri, A. H. Ali, A. M. Lopes, O. Bazighifan, Nonlinear differential equations with distributed delay: some new oscillatory solutions, Mathematics, 10 (2022), 10 pages
-
[4]
B. Almarri, S. Janaki, V. Ganesan, A. H. Ali, K. Nonlaopon, O. Bazighifan, Novel oscillation theorems and symmetric properties of nonlinear delay differential equations of fourth-order with a middle term, Symmetry, 14 (2022), 1–11
-
[5]
A. k. Alsharidi, A. Muhib, Oscillation criteria for mixed neutral differential equations, AIMS Math., 9 (2024), 14473–14486
-
[6]
B. Baculíková, J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Model., 52 (2010), 215–225
-
[7]
A. Bano, A. Dawood, Rida, F. Saira, A. Malik, M. Alkholief, H. Ahmad, M. A. Khan, Z. Ahmad, O. Bazighifan, Enhancing catalytic activity of gold nanoparticles in a standard redox reaction by investigating the impact of AuNPs size, temperature and reductant concentrations, Sci. Rep., 13 (2023), 13 pages
-
[8]
O. Bazighifan, An approach for studying asymptotic properties of solutions of neutral differential equations, Symmetry, 12 (2020), 8 pages
-
[9]
O. Bazighifan, T. Abdeljawad, Q. M. Al-Mdallal, Differential equations of even-order with p-Laplacian like operators: qualitative properties of the solutions, Adv. Difference Equ., 2021 (2021), 10 pages
-
[10]
O. Bazighifan, A. H. Ali, F. Mofarreh, Y. N. Raffoul, Extended approach to the asymptotic behavior and symmetric solutions of advanced differential equations, Symmetry, 14 (2022), 11 pages
-
[11]
G. E. Chatzarakis, J. Džurina, I. Jadlovská, Oscillatary properties of third-order neutral delay differential equations with noncannanical operators, Mathematics, 7 (2019), 12 pages
-
[12]
G. E. Chatzarakis, S. R. Grace, I. Jadlovská, T. Li, E. Tunç, Oscillaiton critaria for third-order Emden-Fowler differential equations with unbounded neutral coefficient, Complelexity, 2019 (2019), 7 pages
-
[13]
G. E. Chatzarakis, R. Srinivasan, E. Thandapani, Oscillation results for third-order quasilinear Emden-Fowler differential equatione with unbounded neutral coefficients, Tatra Mt. Math. Publ., 80 (2021), 1–14
-
[14]
A. Columbu, R. Díaz Fuentes, S. Frassu, Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction-repulsion chemotaxis models with logistics, Nonlinear Anal. Real World Appl., 79 (2024), 14 pages
-
[15]
Z. Došlá, P. Liška, Oscillation of third-order nonlinear neutral differential equations, Appl. Math. Lett., 56 (2016), 42–48
-
[16]
J. Džurina, E. Thandapani, S. Tamilvanan, Oscillation of solutions to third-order half-linear neutral differential equations, Electron. J. Differ. Equ., 2012 (2012), 9 pages
-
[17]
J. R. Graef, E. Tunç, S. R. Grace, Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation, Opusc. Math., 37 (2017), 839–852
-
[18]
I. Gy˝ori, G. Ladas, Oscillation theory of delay differential equations, The Clarendon Press, Oxford University Press, New York (1991)
-
[19]
Y. Jiang, C. Jiang, T. Li, Oscillatory behavior of third-order nonlinear neutral delay differential equations, Adv. Difference Equ., 2016 (2016), 12 pages
-
[20]
Y.Jiang, T. Li, Asymptotic behavior of a third-order nonlinear neutral delay differential equation, J. Inequal. Appl., 2014 (2014), 7 pages
-
[21]
Z. Jiao, I. Jadlovská, T. Li, Global existence in a fully parabolic attraction repulsion chemotaxis system with singular sensitivities and proliferation, J. Differ. Equ., 411 (2024), 227–267
-
[22]
G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York (1987)
-
[23]
T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages
-
[24]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness model in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[25]
T. Li, Y. V. Rogovchenko, Asymptotic behavior of higher-order quasilinear neutral differential equations, Abstr. Appl. Anal., 2014 (2014), 14 pages
-
[26]
T. Li, Y. V. Rogovchenko, Asymptotic behavior of an odd-order delay differential equation, Bound. Value Probl., 2014 (2014), 10 pages
-
[27]
T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59
-
[28]
T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differ. Integral Equ., 34 (2021), 315–336
-
[29]
T. Li, C. Zhang, G. Xing, Oscillation of thrid-order neutral delay differential equations, Abstr. Appl. Anal., 2012 (2012), 11 pages
-
[30]
Q. Liu, S. R. Grace, I. Jadlovská, E. Tunç, T. Li, On the asymptotic behavior of noncanonical third-order Emden- Fowler delay differential equations with a superlinear neutral term, Mathematics, 10 (2022), 12 pages
-
[31]
O. Moaaz, J. Dassios, W. Muhsin, A. Muhib, Osillation theory for nonlinear neutral delay differential equations of third-order, Appl. Sci., 10 (2020), 16 pages
-
[32]
O. Moaaz, R. A. El-Nabulsi, O. Bazighifan, Oscillatory behavior of fourth-order differential equations with neutral delay, Symmetry, 12 (2020), 8 pages
-
[33]
O. Moaaz, P. Kumam, O. Bazighifan, On the oscillatory behavior of a class of fourth-order nonlinear differential equation, Symmetry, 12 (2020), 9 pages
-
[34]
N. Omar, S. Serra-Capizzano, B. Qaraad, F. Alharbi, O. Moaag, E. M. Elabbasy, More effective criteria for testing the oscillation of solutions of third-order differential equations, Axioms, 13 (2024), 11 pages
-
[35]
S. Padhi, S. Pati, Theory of third-order differential equations, Springer, New Delhi (2014)
-
[36]
N. Prabaharan, E. Thandapani, E. Tunç, Asymptotic behavior of semi-canonical third-order delay differential equations with a superlinear neutral term, Palest. J. Math., 12 (2023), 473–483
-
[37]
K. Saranya, V. Piramanantham, E. Thandapani, E. Tunç, Oscillation criteria for third-order semi-canonical differential equations with unbounded neutral coefficients, Stud. Univ. Babe¸s-Bolyai Math., 69 (2024), 115–125
-
[38]
M. Sohail, U. Nazir, O. Bazighifan, R. A. El-Nabulsi, M. M. Selim, H. Alrabaiah, P. Thounthong, Significant Involvement of Double Diffusion Theories on Viscoelastic Fluid Comprising Variable Thermophysical Properties, Micromachines, 12 (2021), 15 pages
-
[39]
Y. Sun, Y. Zhao, Q. Xie, Oscillation criteria for third-order neutral differential equations with unbounded neutral coefficients and distributed deviating arguments, Turkish J. Math., 46 (2022), 1099–1112
-
[40]
E. Thandapani, M. M. A. El-Sheikh, R. Sallam, S. Salem, On the oscillatory behavior of third order differential equations with a sublinear neutral term, Math. Slovaca, 70 (2020), 95–106
-
[41]
E. Thandapani, T. Li, On the oscillation of third-order quasi-linear neutral functional differential equations, Arch. Math. (Brno), 47 (2011), 181–199
-
[42]
E. Thandapani, S. Tamilvanan, E. S. Jambulingam, Oscillation of third-order halflinear neutral delay differential equations, Int. J. Pure Appl. Math., 77 (2012), 359–368
-
[43]
E. Tunç, S. R. Grace, Oscillatory behavior of solutions to third-order nonlinear differential equations with a superlinear neutral term, Electron. J. Differ. Equ., 2020 (2020), 11 pages
-
[44]
E. Tunç, S. ¸Sahin, J. R. Graef, S. Pinelas, New oscillation criteria for third-order differential equations with bounded and unbounded neutral coefficients, Electron. J. Qual. Theory Differ. Equ., 2021 (2021), 13 pages
-
[45]
K. S. Vidhyaa, J. R. Graef, E. Thandapani, New oscillation results for third-order half-linear neutral differential equations, Mathematics, 8 (2020), 9 pages