Numerical and visual analysis of Maclaurin type inequalities in the setting of generalized fractional calculus and applications
Authors
Y. Wang
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China.
U. Asif
- Department of Mathematics, Government College University Faisalabad, Pakistan.
M. Z. Javed
- Department of Mathematics, Government College University Faisalabad, Pakistan.
M. U. Awan
- Department of Mathematics, Government College University Faisalabad, Pakistan.
B. Meftah
- Laboratory of Analysis and Control of Differential Equations 'ACED', Department of Mathematics, University of 8 May 1945, Guelma 24000, Algeria.
A. Kashuri
- Department of Mathematical Engineering, Polytechnic University of Tirana, Tirana 1001, Albania.
M. A. Noor
- Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan.
Abstract
Yang local fractional calculus is very effective tools to investigate the non-differentiable functions. Moreover, local fractional calculus generalize the classical results and provide more general framework to investigate various problems. This study intends to construct new versions of Maclaurin's inequality for generalized fractional calculus. The study introduces a fresh equation for first-order local differentiable mappings. We develop new error estimates of Maclaurin's inequality incorporated with newly proposed identity, local fractional (L.F) variants of Hölder's type inequalities and generalized convexity. Additionally, we discuss some potential consequences of our primary findings to ensure the worth of our findings. We establish some interesting relations between generalized means, error boundaries of composite quadrature schemes within fractal space and probability distribution. We justify the accuracy of proposed results through visual analysis. The bounds obtained in our study are the better bounds as compared to previously established results. Also, for different values of \({\sigma}\in(0,1]\), blend of inequalities can be obtained.
Share and Cite
ISRP Style
Y. Wang, U. Asif, M. Z. Javed, M. U. Awan, B. Meftah, A. Kashuri, M. A. Noor, Numerical and visual analysis of Maclaurin type inequalities in the setting of generalized fractional calculus and applications, Journal of Mathematics and Computer Science, 38 (2025), no. 3, 281--297
AMA Style
Wang Y., Asif U., Javed M. Z., Awan M. U., Meftah B., Kashuri A., Noor M. A., Numerical and visual analysis of Maclaurin type inequalities in the setting of generalized fractional calculus and applications. J Math Comput SCI-JM. (2025); 38(3):281--297
Chicago/Turabian Style
Wang, Y., Asif, U., Javed, M. Z., Awan, M. U., Meftah, B., Kashuri, A., Noor, M. A.. "Numerical and visual analysis of Maclaurin type inequalities in the setting of generalized fractional calculus and applications." Journal of Mathematics and Computer Science, 38, no. 3 (2025): 281--297
Keywords
- Convex functions
- Maclaurin inequality
- Hölder's inequality
- Newton-Cotes formula
- local fractional
MSC
References
-
[1]
M. W. Alomari, S. S. Dragomir, Various error estimations for several Newton-Cotes quadrature formulae in terms of at most first derivative and applications in numerical integration, Jordan J. Math. Stat., 7 (2014), 89–108
-
[2]
S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson’s inequality and applications, J. Inequal. Appl., 5 (2000), 533–579
-
[3]
S. S. Dragomir, C. E. M. Pearse, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University (2000)
-
[4]
T. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals, 27 (2019), 17 pages
-
[5]
T. Du, X. Yuan, On the parameterized fractal integral inequalities and related applications, Chaos Solitons Fractals, 170 (2023), 22 pages
-
[6]
A. Fahad, Y. Qian, Z. Ali, A. Younus, On Generalization of Hermite-Hadamard-Mercer Inequalities for Interval-Valued Functions with Generalized Geometric-Arithmetic Convexity, Int. J. Geom. Methods Mod. Phys., (2024),
-
[7]
F. Hezenci, H. Budak, Maclaurin-type inequalities for Riemann-Liouville fractional integrals, Ann. Univ. Mariae Curie- SkÅ‚odowska Sect. A, 76 (2022), 15–32
-
[8]
C. Luo, H. Wang, T. Du, Fejér-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications, Chaos Solitons Fractals, 131 (2020), 13 pages
-
[9]
B. Meftah, A. Souahi, M. Merad, Some local fractional Maclaurin type inequalities for generalized convex functions and their applications, Chaos Solitons Fractals, 162 (2022), 7 pages
-
[10]
H. Mo, X. Sui, Generalized s-convex functions on fractal sets, Abstr. Appl. Anal., 2014 (2014), 8 pages
-
[11]
M. A. Noor, K. I. Noor, S. Iftikhar, M. U. Awan, Fractal integral inequalities for harmonic convex functions, Appl. Math. Inf. Sci., 12 (2018), 831–839
-
[12]
Y. Peng, T. Du, Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively Pfunctions, Filomat, 37 (2023), 9497–9509
-
[13]
R. V. Sanchez, J. E. Sanabria, Strongly convexity on fractal sets and some inequalities, Proyecciones (Antofagasta), 39 (2020), 1–13
-
[14]
M. Z. Sarikaya, H. Budak, On Fejér type inequalities via local fractional integrals, J. Fract. Calc. Appl., 8 (2017), 59–77
-
[15]
M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc., 145 (2017), 1527–1538
-
[16]
M. Shams, N. Kausar, P. Agarwal, S. Jain, Fuzzy Fractional Caputo-type Numerical Scheme for Solving Fuzzy Nonlinear Equations, In: Fractional Differential Equations, Academic Press, (2024), 167–175
-
[17]
M. Shams, N. Kausar, P. Agarwal, S. Jain, M. A. Salman, M. A. Shah, On family of the Caputo-type fractional numerical scheme for solving polynomial equations, Appl. Math. Sci. Eng., 31 (2023), 20 pages
-
[18]
T. Sitthiwirattham, M. A. Ali, H. Budak, On Some New Maclaurin’s Type Inequalities for Convex Functions in q- Calculus, Fractal Fract., 7 (2023), 13 pages
-
[19]
T. Sitthiwirattham, M. Vivas-Cortez, M. A. Ali, H. Budak, Hermite-hadamard-mercer inequalities for differentiable functions, Fractals, 32 (2024), 13 pages
-
[20]
W. Sun, Local Fractional Ostrowski-type Inequalities Involving Generalized h-Convex Functions and Some Applications for Generalized Moments, Fractals, 29 (2021), 12 pages
-
[21]
W. Sun, R. Xu, Some New Hermite-Hadamard Type Inequalities for Generalized Harmonically Convex Functions Involving Local Fractional Integrals, AIMS Math., 6 (2021), 10679–10695
-
[22]
M. Vivas-Cortez, M. U. Awan, U. Asif, M. Z. Javed, H. Budak, Advances in Ostrowski-Mercer Like Inequalities within Fractal Space, Fractal Fract., 7 (2023), 22 pages
-
[23]
M. Vivas-Cortez, M. Z. Javed, M. U. Awan, M. A. Noor, S. S. Dragomir, Bullen-Mercer type inequalities with applications in numerical analysis, Alex. Eng. J., 96 (2024), 15–33
-
[24]
X.-J. Yang, Advanced local fractional calculus and its applications, World Science, New York, USA (2012)