Wijsman asymptotically ideal statistical sequences of order \((\alpha,\beta)\) under decision making
Volume 38, Issue 3, pp 330--340
https://dx.doi.org/10.22436/jmcs.038.03.04
Publication Date: January 07, 2025
Submission Date: August 15, 2024
Revision Date: October 20, 2024
Accteptance Date: November 09, 2024
Authors
M. M. Mohammed
- Department of Mathematics, Applied college at Khulis, University of Jeddah, Yangiobod MFY, G'ijduvon street, House 74, Jeddah, Saudi Arabia.
S. K. Sharma
- School of Mathematics, Shri Mata Vaishno Devi University, Kakryal, Katra-182320, J\(\&\)K, India.
M. Magzoub
- Mathematics Department, Applied college-Alkamil, University of Jeddah, Jeddah, Saudi Arabia.
R. Kumar
- Department of Mathematics, Central University of Jammu, Rahya Suchani (Bagla), Samba-181143, J\(\&\)K, India.
A. K. Sharma
- Department of Mathematics, Central University of Jammu, Rahya Suchani (Bagla), Samba-181143, J\(\&\)K, India.
H. S. Mahgoub
- College of Business at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
A. A. Gouni
- Faculty of Computer Science and Information Technology, Al neelain University, Khartoum, Sudan.
A. A. Bakery
- Department of Mathematics, Applied college at Khulis, University of Jeddah, Jeddah, Saudi Arabia.
Abstract
The statistical convergence of big data analysis is an essential tool for studying the stability of economic models and many computer vision and machine learning problems. In this paper, we propose the concepts of asymptotically ideal \(\phi\)-statistical equivalent sequences of order \((\alpha,\beta)\) in Wijsman sense by using Musielak-Orlicz function \(\mathcal{M} =(\mathfrak{F}_n)\). We also make an effort to define the concept of asymptotic equivalence, statistical equivalent, \(\phi\)-statistical equivalent sequences of order \((\alpha,\beta)\) in Wijsman sense. We also define the concept of Ces\'{a}ro Musielak-Orlicz asymptoticallly \(\phi\)-equivalent sequences of order \((\alpha,\beta)\) in Wijsman sense and examine some algebraic and topological relationship between these concepts.
Share and Cite
ISRP Style
M. M. Mohammed, S. K. Sharma, M. Magzoub, R. Kumar, A. K. Sharma, H. S. Mahgoub, A. A. Gouni, A. A. Bakery, Wijsman asymptotically ideal statistical sequences of order \((\alpha,\beta)\) under decision making, Journal of Mathematics and Computer Science, 38 (2025), no. 3, 330--340
AMA Style
Mohammed M. M., Sharma S. K., Magzoub M., Kumar R., Sharma A. K., Mahgoub H. S., Gouni A. A., Bakery A. A., Wijsman asymptotically ideal statistical sequences of order \((\alpha,\beta)\) under decision making. J Math Comput SCI-JM. (2025); 38(3):330--340
Chicago/Turabian Style
Mohammed, M. M., Sharma, S. K., Magzoub, M., Kumar, R., Sharma, A. K., Mahgoub, H. S., Gouni, A. A., Bakery, A. A.. "Wijsman asymptotically ideal statistical sequences of order \((\alpha,\beta)\) under decision making." Journal of Mathematics and Computer Science, 38, no. 3 (2025): 330--340
Keywords
- Statistical convergence
- asymptotically equivalence
- Wijsman convergence
- Orlicz function
- Musielak-Orlicz function
MSC
References
-
[1]
G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Austral. Math. Soc., 31 (1985), 421–432
-
[2]
N. L. Braha, On asymptotically Δm lacunary statistical equivalent sequences, Appl. Math. Comput., 219 (2012), 280–288
-
[3]
Q.-B. Cai, S. K. Sharma, M. A. Mursaleen, A note on lacunary sequence spaces of fractional difference operator of order (α, β), J. Funct. Spaces, 2022 (2022), 9 pages
-
[4]
P. Das, E. Savas, S. Kr. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24 (2011), 1509–1514
-
[5]
H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244
-
[6]
J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313
-
[7]
B. Hazarika, Wijsman Orlicz asymptotically ideal ϕ-statistical equivalent sequences, J. Funct. Spaces Appl., 2013 (2013), 9 pages
-
[8]
B. Hazarika, A. Esi, Statistically almost λ-convergence of sequences of sets, Eur. J. Pure Appl. Math., 6 (2013), 137–146
-
[9]
P. Kostyrko, T. Šalát, W. Wilczy ´ nski, I-convergence, Real Anal. Exchange, 26 (2000/01), 669–685
-
[10]
R. Kumar, S. K. Sharma, Asymptotically lacunary statistical equivalence set sequences of order (α, β), Adv. Stud. Euro- Tbil. Math. J., 16 (2023), 67–75
-
[11]
R. Kumar, S. K. Sharma, A. K. Sharma, Asymptotically Wijsman lacunary sequences of order (α, β), J. Anal., 32 (2024), 2037–2055
-
[12]
J. Li, Asymptotic equivalence of sequences and summability, Int. J. Math. Math. Sci., 20 (1997), 749–757
-
[13]
M. S. Marouf, Asymptotic equivalence and summability, Int. J. Math. Math. Sci., 16 (1993), 755–762
-
[14]
S. A. Mohiuddine, S. K. Sharma, D. A. Abuzaid, Some seminormed difference sequence spaces over n-normed spaces defined by a Musielak-Orlicz function of order (α, β), J. Funct. Spaces, 2018 (2018), 11 pages
-
[15]
M. Mursaleen, S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62 (2012), 49–62
-
[16]
J. Musielak, Orlicz spaces and modular spaces, Springer-Verlag, Berlin (1983)
-
[17]
F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49 (2012), 87–99
-
[18]
R. F. Patterson, On asymptotically statistical equivalent sequences, Demonstratio Math., 36 (2003), 149–153
-
[19]
F. Patterson, E. Sava¸s, On asymptotically lacunary statistical equivalent sequences, Thai J. Math., 4 (2006), 267–272
-
[20]
I. P. Pobyvanets, Asymptotic equivalence of some linear transformations, defined by a nonnegative matrix and reduced to generalized equivalence in the sense of Cesàro and Abel, Mat. Fiz., 28 (1980), 83–87
-
[21]
T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139–150
-
[22]
E. Sava¸s, On I-asymptotically lacunary statistical equivalent sequences, Adv. Difference Equ., 2013 (2013), 7 pages
-
[23]
I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375
-
[24]
S. K. Sharma, S. A. Mohiuddine, A. K. Sharma, T. K. Sharma, Sequence spaces over n-normed spaces defined by Musielak-Orlicz function of order (α, β), Facta Univ. Ser. Math. Inform., 33 (2018), 721–738
-
[25]
B. C. Tripathy, A. J. Dutta, Lacunary I-convergent sequences of fuzzy real numbers, Proyecciones, 34 (2015), 205–218
-
[26]
B. C. Tripathy, B. Hazarika, I-convergent sequence spaces associated with multiplier sequences, Math. Inequal. Appl., 11 (2008), 543–548
-
[27]
B. C. Tripathy, B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta Math. Appl. Sin. Engl. Ser., 27 (2011), 149–154
-
[28]
B. C. Tripathy, S. Mahanta, On I-acceleration convergence of sequences, J. Franklin Inst., 347 (2010), 591–598
-
[29]
R. A.Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70 (1964), 186–188