Application of Adomian Decomposition Method for Solving Impulsive Differential Equations
-
2956
Downloads
-
4657
Views
Authors
H. Hossainzadeh
- Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
G. A. Afrouzi
- Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
A. Yazdani
- Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
Abstract
In this work, we apply the Adomian Decomposition Method(ADM) for solving first
order impulsive differential equations
\[x(t)=\alpha x, t\neq k, t>0,\]
\[\Delta x=\beta x, t=k,\]
\[x(0^+)=x_0,\]
where \(\alpha\neq 0,\beta, x_0\in R, 1+\beta\neq 0, k\in N\) are investigated. We compare this method
with others numerical methods such as \(\theta\)-method, Runge-kutta method for
solving impulsive differential equations.
Share and Cite
ISRP Style
H. Hossainzadeh, G. A. Afrouzi, A. Yazdani, Application of Adomian Decomposition Method for Solving Impulsive Differential Equations, Journal of Mathematics and Computer Science, 2 (2011), no. 4, 672--681
AMA Style
Hossainzadeh H., Afrouzi G. A., Yazdani A., Application of Adomian Decomposition Method for Solving Impulsive Differential Equations. J Math Comput SCI-JM. (2011); 2(4):672--681
Chicago/Turabian Style
Hossainzadeh, H., Afrouzi, G. A., Yazdani, A.. "Application of Adomian Decomposition Method for Solving Impulsive Differential Equations." Journal of Mathematics and Computer Science, 2, no. 4 (2011): 672--681
Keywords
- Impulsive differential equations
- Adomian Decomposition Method
- \(\theta\)-method
- Runge-Kutta method.
MSC
References
-
[1]
D. D. Bainov, A. Dishliev, Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population, Comptes rendus de l’Academie Bulgare des Sciences, 42 (1989), 29--32
-
[2]
D. D. Bainov, P. S. Simenov, Systems with Impulse Effect Stability Theory and Applications, Ellis Horwood Limited, Chichester (1989)
-
[3]
A. Dishliev, D. D. Bainov, Dependence upon initial conditions and parameters of solutions of impulsive differential equations with variable structure, International Journal of Theoretical Physics, 29 (1990), 655--676
-
[4]
V. D. Mil’man, A. D. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J., 1 (1960), 233--237
-
[5]
M. U. Akhmet, On the general problem of stability for impulsive differential equations, J. Math. Anal. Appl., 288 (2003), 182--196
-
[6]
D. D. Bainov, P. S. Simeonov, Systems with impulse effect: stability, theory and applications, Ellis Horwood Limited, Chichester (1989)
-
[7]
L. Z. Dong, L. Chen, L. H. Sun, Extiction and permanence of the predator-prey system with stocking of prey and harvesting of predator impulsively, Math. Meth. Appl. Sci., 29 (2006), 415--425
-
[8]
V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989)
-
[9]
A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995)
-
[10]
G. Kulev, D. D. Bainov, On the stability of systems with impulsive by sirect method of Lyapunov, J. Math. Anal. Appl., 140 (1989), 324--340
-
[11]
D. D. Bainov, G. Kulev, Application of Lyapunov’s functions to the investigation of global stability of solutions of system with impulses, Appl. Anal., 26 (1988), 255--270
-
[12]
B. M. Randelovic, L. V. Stefanovic, B. M. Dankovic, Numerical solution of impulsive differential equations, Facta Univ. Ser. Math. Inform., 15 (2000), 101--111
-
[13]
X. J. Ran, M. Z. Liu, Q. Y. Zhu, Numerical methods for impulsive differential equation, Mathematical and computer modelling, 48 (2008), 46--55
-
[14]
X. L. Fu, B. Q. Yan, Introduction to the Impulsive Differential System, Scientific Publishers, 2005 (2005), 1--33
-
[15]
Y. Cherruault, Modèles et Méthodes Mathématiques pour les Sciences du Vivant, Presses Universitaires de France, Paris (1998)
-
[16]
Y. Cherruault, G. Adomian, Decomposition methods: a new proof of convergence, Math. Comput. Model., 18 (1993), 103--106
-
[17]
K. Abbaoui, Y. Cherruault, Convergence of Adomian’s method applied to differential equations, Comput. Math. Appl., 28 (1994), 103--109