Dynamical Systems on Finsler Modules
-
2375
Downloads
-
4407
Views
Authors
M. Hassani
- Department of Mathematics, Faculty of sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Abstract
In this paper we investigate the generalized derivations and show that if E be
a simple full Finsler A-module and let \(\delta: D(\delta)\subseteq E\rightarrow E\) be a d-derivation.Then either \(\delta\)
is closable or both of the sets \(\{x\pm \delta(x): x\in E\}\) are dense in \(E\oplus E\). We also describe
dynamical systems on a full Finsler module E over \(C^*\)- algebra A as a one -parameter group.
Share and Cite
ISRP Style
M. Hassani, Dynamical Systems on Finsler Modules, Journal of Mathematics and Computer Science, 4 (2012), no. 1, 19--24
AMA Style
Hassani M., Dynamical Systems on Finsler Modules. J Math Comput SCI-JM. (2012); 4(1):19--24
Chicago/Turabian Style
Hassani, M.. "Dynamical Systems on Finsler Modules." Journal of Mathematics and Computer Science, 4, no. 1 (2012): 19--24
Keywords
- Derivation
- Finsler module
- Hilbert A-module
- Dynamical systems
MSC
References
-
[1]
M. Amyari, A. Niknam, On homomorphisms of Finsler modules, International Mathematical Journal, Vol. 3, 277--281 (2003)
-
[2]
M. Amyari, A. Niknam, A note on Finsler modules, Bull. Iran. Math. Soc., 29 (2003), 77--81
-
[3]
E. Hille, R. Phillips, Functional analysis and semi-groups, Proceedings of Symposia in pure mathematics, Rhode Island (1957)
-
[4]
E. C. Lance, Hilbert \(C^*\)-module: a toolkit for operator algebraists, Cambridge University Press, Cambridge (1995)
-
[5]
W. L. Paschke, Inner product module over \(B^*\)-algebras, Transactions of the American Mathematical Society, 182 (1973), 443--468
-
[6]
N. Phillips, N. Weaver, Modules with norms which take values in a \(C^*\)-algebra, Pacific journal of mathematics, 185 (1998), 163--181
-
[7]
M. Mathieu, Elementary operators and Applications, World Scientific Publishing, Singapore (1992)
-
[8]
A. Taghavi, M. Jafarzadeh, A note on Modules maps over Finsler Modules, Journal of Advances in Applied Mathematics Analysis, 2 (2007), 89--95
-
[9]
S. Sakai, Operator algebras in dynamical systems, Cambridge University Press, Cambridge (1991)