Two Continuity Concepts in Approximation Theory
-
2399
Downloads
-
3680
Views
Authors
Hossein Asnaashari
- Faculty of basic sciences, Zabol University, Zabol, Iran
Abstract
In this note,
we study various continuity criteria
for the set-valued metric projection onto a set \(V\). Also we introduce some simpler and
more general radial continuity criteria.
Share and Cite
ISRP Style
Hossein Asnaashari, Two Continuity Concepts in Approximation Theory, Journal of Mathematics and Computer Science, 4 (2012), no. 1, 32--36
AMA Style
Asnaashari Hossein, Two Continuity Concepts in Approximation Theory. J Math Comput SCI-JM. (2012); 4(1):32--36
Chicago/Turabian Style
Asnaashari, Hossein. "Two Continuity Concepts in Approximation Theory." Journal of Mathematics and Computer Science, 4, no. 1 (2012): 32--36
Keywords
- Metric projection
- best approximation
- Chebyshev set
- sun
- set-valued mapping.
MSC
References
-
[1]
D. Amir, F. Deutsch, Suns, moons, and quasi-polyhedra, J. Approximation Theory, 6 (1972), 176--201
-
[2]
E. Asplund, Čebyšev sets in Hilbert space, Trans. Amer. Math. Soc., 144 (1969), 236--240
-
[3]
J. Blatter, Zur Stetigkeit von mengenwertigen metrischen Projektionen, In: Quasi-Nullsummenspiele und dominierte Gleichgewichtspunkte in Bimatrix-Spielen, 1967 (1967), 17--38
-
[4]
J. Blatter, P. D. Morris, D. Wulbert, Continuity of the set-valued metric projection, Math. Ann., 178 (1968), 12--24
-
[5]
J. Blatter, Weiteste Punkte und nächste Punkte, Rev. Roumaine Math. Pures Appl., 14 (1969), 615--621
-
[6]
B. Brosowski, R. Wegmann, Charakterisierung bester Approximationen in normierten Vektorrumen, J. Approximation Theory, 3 (1970), 369--397
-
[7]
B. Brosowski, R. Wegmann, On the lower semi-continuity of the set-valued metric projection, J. Approximation Theory, Vol. 8, 84--100 (1973)
-
[8]
B. Brosowski, Über eine Fixpunkteigenschaft der metrischen Projektion, Computing, 5 (1970), 295--302
-
[9]
B. Brosowski, F. Deutsch, On some geometric properties of suns, J. Approximation Theory, Vol. 10, 245--267 (1974)
-
[10]
A. L. Brown, Best n-dimensional approximation to sets of functions, Proc. London Math. Soc., 14 (1964), 577--594
-
[11]
N. Dunford, J. T. Schwartz, Linear operators part I: general theory, Interscience publishers, New York (1958)
-
[12]
H. Hahn, Reelle Funktionen: Erster Teil: Punktfunktionen, Chelsea Publishing Company, Chelsea (1948)
-
[13]
V. Klee, Remarks on nearest points in normed linear spaces, In: Proc. Colloq. Convexity (Copenhagen), 1965 (1965), 161--176
-
[14]
B. Brosowski, F. Deutsch, Some new continuity concepts for metric projections, Bull. Amer. Math. Soc., 78 (1972), 974--978
-
[15]
J. Lindenstrauss, Extension of compact operators, American Mathematical Soc., 1964 (1964), 112 pages
-
[16]
P. D. Morris, Metric projections onto subspaces of finite codimension, Duke Math. J., 35 (1968), 799--808
-
[17]
E. V. Oshman, Continuity of metric projection and some geometric properties of the unit sphere in a Banach space, Doklady Akademii Nauk, 185 (1969), 34--36
-
[18]
I. Singer, On set-valued metric projections, In: Linear Operators and Approximation/Lineare Operatoren und Approximation, 217--233 (1972)
-
[19]
S. B. Steckin, Approximation properties of sets in normed linear spaces, Rev. Roumaine Math. Pures Appl., 8 (1963), 5--18
-
[20]
L. P. Vlasov, Approximatively convex sets in Banach spaces, Dokl. Akad. Nauk SSSR, 6 (1965), 876--879
-
[21]
L. P. Vlasov, Chebyshev sets and approximatively convex sets, Matematicheskie Zametki (Russian), 2 (1967), 600--605