Fuzzy Semi Open Soft Sets Related Properties in Fuzzy Soft Topological Spaces
-
3639
Downloads
-
5521
Views
Authors
A. Kandil
- Mathematics Department, Faculty of Science, Helwan University, Helwan, Egypt.
O. A. E. Tantawy
- Mathematics Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
S. A. El-sheikh
- Mathematics Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
A. M. Abd El-latif
- Mathematics Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
Abstract
In the present paper, we continue the study on fuzzy soft topological spaces and
investigate the properties of fuzzy semi open (closed) soft sets, fuzzy semi soft interior
(closure), fuzzy semi continuous (open) soft functions and fuzzy semi separation axioms
which are important for further research on fuzzy soft topology. In particular, we study
the relationship between fuzzy semi soft interior fuzzy semi soft closure. Moreover, we
study the properties of fuzzy soft semi regular spaces and fuzzy soft semi normal spaces.
This paper, not only can form the theoretical basis for further applications of topology
on soft sets, but also lead to the development of information systems.
Share and Cite
ISRP Style
A. Kandil, O. A. E. Tantawy, S. A. El-sheikh, A. M. Abd El-latif, Fuzzy Semi Open Soft Sets Related Properties in Fuzzy Soft Topological Spaces , Journal of Mathematics and Computer Science, 13 (2014), no. 2, 94-114
AMA Style
Kandil A., Tantawy O. A. E., El-sheikh S. A., El-latif A. M. Abd, Fuzzy Semi Open Soft Sets Related Properties in Fuzzy Soft Topological Spaces . J Math Comput SCI-JM. (2014); 13(2):94-114
Chicago/Turabian Style
Kandil, A., Tantawy, O. A. E., El-sheikh, S. A., El-latif, A. M. Abd. "Fuzzy Semi Open Soft Sets Related Properties in Fuzzy Soft Topological Spaces ." Journal of Mathematics and Computer Science, 13, no. 2 (2014): 94-114
Keywords
- Soft set
- Fuzzy soft set
- Fuzzy soft topological space
- Fuzzy semi soft interior
- Fuzzy semi soft closure
- Fuzzy semi open soft
- Fuzzy semi closed soft
- Fuzzy semi continuous soft functions
- Fuzzy soft semi separation axioms
- Fuzzy soft semi regular
- Fuzzy soft semi \(T_i\)-spaces (i =1،2،3،4)
- Fuzzy soft semi normal.
MSC
References
-
[1]
B. Ahmad, A. Kharal, Mappings of fuzzy soft classes , Adv. Fuzzy Syst. Art. ID 407890, (2009), 6 pages.
-
[2]
B. Ahmad, A. Kharal , Mappings of soft classes, New Math. Nat. Comput., 7 (3) (2011), 471-481.
-
[3]
B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., (2009), 1-6.
-
[4]
M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Computers and Mathematics with Applications , 57 (2009), 1547-1553.
-
[5]
A. M. Aminpour, M. Seilani , Compact topological semigroups associated with oids , J. Math. Computer Sci. , 12 (3) (2014), 219-234.
-
[6]
S. Atmaca, I.Zorlutuna , On fuzzy soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 5 (2013), 377-386.
-
[7]
A. Aygunoglu, H. Aygun , Introduction to fuzzy soft groups, Computers and Mathematics with Applications , 58 (2009), 1279-1286.
-
[8]
Bakir Tanay, M. Burcl Kandemir , Topological structure of fuzzy soft sets, Computer and mathematics with applications, 61 (2011), 2952-2957.
-
[9]
N. Cagman, F. Citak, S. Enginoglu, Fuzzy parameterized fuzzy soft set theory and its applications, Turkish Journal of Fuzzy Systems, 1 (1) (2010), 21-35.
-
[10]
N. Cagman, S. Enginoglu, Soft set theory and uni-int decision making, European Journal of Operational Research , 207 (2010), 848-855.
-
[11]
C. L. Change, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
-
[12]
Eshagh Hosseinpour, T-rough fuzzy subgroups of groups, J. Math. Computer Sci. , 12 (3) (2014), 186-195.
-
[13]
Haci Aktas, Naim Cagman, Soft sets and soft groups, Innformation science, 177 (2007), 2726-2735.
-
[14]
M. Jain, M. P. S. Bhatia, A rough set based approach to classify node behavior in mobile ad hoc networks, J. Math. Computer Sci. , 10 (2) (2014), 64-78.
-
[15]
Jianyu Xiao, Minming Tong, Qi Fan, Su Xiao, Generalization of Belief and Plausibility Functions to Fuzzy Sets, Applied Mathematics Information Sciences, 6 (2012), 697-703.
-
[16]
A.Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, \(\gamma\)-operation and decompositions of some forms of soft continuity in soft topological spaces, Annals of Fuzzy Mathematics and Informatics , 7 (2014), 181-196.
-
[17]
A.Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, Soft semi separation axioms and irresolute soft functions, Annals of Fuzzy Mathematics and Informatics , 8 (2014), 305-318.
-
[18]
D. V. Kovkov, V. M. Kolbanov, D. A. Molodtsov, Soft sets theory-based optimization , Journal of Computer and Systems Sciences Finternational , 46 (6) (2007), 872-880.
-
[19]
F. Lin , Soft connected spaces and soft paracompact spaces, International Journal of Mathematical Science and Engineering, 7 (2) (2013), 1-7.
-
[20]
J. Mahanta, P. K. Das, Results on fuzzy soft topological spaces, arXiv:1203.0634v1, (2012),
-
[21]
P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics , 9 (3) (2001), 589-602.
-
[22]
P. K. Maji, R. Biswas, A. R. Roy, intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, 9 (3) (2001), 677-691.
-
[23]
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Computers and Mathematics with Applications , 45 (2003), 555-562.
-
[24]
P. Majumdar, S. K. Samanta, Generalised fuzzy soft sets, Computers and Mathematics with Applications, 59 (2010), 1425-1432.
-
[25]
D. A. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications , 37 (1999), 19-31.
-
[26]
D. Molodtsov, V. Y. Leonov, D. V. Kovkov, Soft sets technique and its application , Nechetkie Sistemy i Myagkie Vychisleniya , 1 (1) (2006), 8-39.
-
[27]
A. Mukherjee, S. B. Chakraborty, On Intuitionistic fuzzy soft relations, Bulletin of Kerala Mathematics Association, 5 (1) (2008), 35-42.
-
[28]
B. Pazar Varol, H. Aygun, Fuzzy soft topology, Hacettepe Journal of Mathematics and Statistics, 41 (3) (2012), 407-419.
-
[29]
D. Pei, D. Miao, From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in: IEEE, 2 (2005), 617-621.
-
[30]
H. Rahimpoor, A. Ebadian, M. Eshaghi Gordji, A. Zohri , Fixed point theory for generalized quasi-contraction Maps in modular metric spaces, J. Math. Computer Sci. , 10 (1) (2014), 47-53.
-
[31]
S. Roy, T. K. Samanta, A note on fuzzy soft topological spaces, Annals of Fuzzy Mathematics and informatics , 3 (2) (2012), 305-311.
-
[32]
S. Roy, T. K. Samanta, An introduction to open and closed sets on fuzzy topological spaces , Annals of Fuzzy Mathematics and Informatics, (2012)
-
[33]
M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl. , 61 (2011), 1786-1799.
-
[34]
J. K. Syed, L. A. Aziz , Fuzzy Inventory Model without Short-ages Using Signed Distance Method , Applied Mathematics Information Sciences, 1 (2007), 203-209.
-
[35]
B. Tanay, M. B. Kandemir, Topological structure of fuzzy soft sets, Computer and Math. with appl. , 61 (2011), 2952--2957.
-
[36]
Won Keun Min, A note on soft topological spaces, Computers and Mathematics with Applications , 62 (2011), 3524-3528.
-
[37]
Z. Xiao, L. Chen, B. Zhong, S. Ye, Recognition for soft information based on the theory of soft sets, in: J. Chen (Ed.), Proceedings of ICSSSM-05, 2 (2005), 1104-1106.
-
[38]
Yong Chan Kim, Jung Mi Ko, Fuzzy G-closure operators , commun Korean Math. Soc., 18(2) (2008), 325-340.
-
[39]
L. A. Zadeh, Fuzzy sets, Information and Control , 8 (1965), 338-353.
-
[40]
Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowledge-Based Systems, 21 (2008), 941-945.