# New Approach for Solving of Linear Fredholm Fuzzy Integral Equations Using Sinc Function

Volume 3, Issue 4, pp 422--431
• 1569 Views ### Authors

Mohammad Keyanpour - Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran Tahereh Akbarian - Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

### Abstract

A numerical method is proposed to solve linear fredholm fuzzy integral equations(LFFIE). The proposed method in this paper is based on concept of the parametric form of fuzzy numbers and Sinc wavelet. By using the parametric form of fuzzy numbers linear fredholm fuzzy integral equations have been converted into a system of fredholm integral equations in the crisp form, and Sinc approach this problem reduced to solving algebraic equations. The efficiency of the proposed approach is demonstrated by numerical examples.

### Keywords

• Sinc function
• Linear fredholm fuzzy integral equation
• Fuzzy parametric form.

•  45B05
•  15B15
•  26E50
•  34A07

### References

•  R. E. Bellman, R. Kalaba, L. A. Zadeh, Abstraction and Pattern Classification, RAND Memo, 19 pages, (1964)

•  S. C. Arora, V. Sharma, Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems, 110 (2000), 127--130

•  R. K. Bose, D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems, 21 (1987), 53--58

•  J. Y. Park, J. U. Jeong, Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems, 87 (1997), 111--116

•  V. Lakshmikantham, A. S. Vatsala, Existence of fixed points of fuzzy mappings via theory of fuzzy differential equations, J. Comput. Appl. Math., 113 (2000), 195--200

•  S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566--569

•  M. Ghanbari, R. Toushmalni, E. Kamrani, Numerical solution of linear Fredholm fuzzy integral equation of the second kind by Block-pulse functions, Aust. J. Basic Appl. Sci., 3 (2009), 2637--2642

•  T. Allahviranlooa, S. Hashemzehi, The Homotopy Perturbation Method for Fuzzy Fredholm Integral Equations, Journal of Applied Mathematics, Vol. 5, 1--12, (2008)

•  M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets and Systems, 106 (1999), 35--48

•  H. S. Goghary, M. S. Goghary, Two computational methods for solving linear Fredholm fuzzy integral equation of te second kind, Applied Mathematics And Computation , 182 (2006), 791--796

•  S. Abbasbandy, E. Babolian, M. Alavi, Numerical method for solving linear Fredholm fuzzy integral equations of the second kind, Chaos Solitons Fractals, 31 (2007), 138--146

•  O. S. Fard, M. Sanchooli, Two Successive Schemes for Numerical Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind Australian , Australian Journal of Basic and Applied Sciences, 4 (2010), 817--825

•  A. Molabahrami, A. Shidfar, A. Ghyasi, An analytical method for solving linear Fredholm fuzzy integral equations of the second kind, Computers and Mathematics with Applications , 61 (2011), 2754--2761

•  K. Maleknejad, R. Mollapourasl, P. Torabi, M. Alizadeh, Solution of First kind Fredholm Integral Equation by Sinc Function, World Academy of Science, Engineering and Technology, 1539--1543 (2010)

•  E. Babolian, H. Sadeghi Goghary, S. Abbasbandy, Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method, Appl. Math. Comput., 161 (2005), 733--744

•  M. Annunziato, A. Borzi, Fast solvers of Fredholm optimal control problems, Numerical Mathematics: Theory, Methods and Applications, 3 (2010), 431--448