Bernstein Polynomials for Solving Abels Integral Equation
-
3705
Downloads
-
4573
Views
Authors
Mohsen Alipour
- Member of young research club, Islamic Azad University, Sari branch, P. O. Box 48164-194, Sari, Iran
Davood Rostamy
- Department of Mathematics, Imam Khomeini International University, P. O. Box 34149-16818, Qazvin, Iran
Abstract
This paper presents a numerical method for solving Abel’s integral equation as singular Volterra integral equations. In the proposed method, the functions in Abel’s integral equation are approximated based on Bernstein polynomials (BPs) and therefore, the solving of Abel’s integral equation is reduced to the solving of linear algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Share and Cite
ISRP Style
Mohsen Alipour, Davood Rostamy, Bernstein Polynomials for Solving Abels Integral Equation , Journal of Mathematics and Computer Science, 3 (2011), no. 4, 403--412
AMA Style
Alipour Mohsen, Rostamy Davood, Bernstein Polynomials for Solving Abels Integral Equation . J Math Comput SCI-JM. (2011); 3(4):403--412
Chicago/Turabian Style
Alipour, Mohsen, Rostamy, Davood. "Bernstein Polynomials for Solving Abels Integral Equation ." Journal of Mathematics and Computer Science, 3, no. 4 (2011): 403--412
Keywords
- Abel’s integral equations
- Singular Volterra integral equations
- Bernstein polynomials.
MSC
References
-
[1]
R. Goreno, S. Vessella, Abel integral equations: analysis and applications, Springer-Verlag, Berlin-New York (1991)
-
[2]
N. Zeilon , Sur quelques points de la theorie de l’equation integrale d’Abel, Arkiv. Mat. Astr. Fysik. , 18 (1922), 1--19
-
[3]
F. G. Tricomi, Integral Equations, Dover Publications, New York (1985)
-
[4]
L. J. Lardy, A variation of Nystrom’s method for Hammerstein equations, J. Integ. Equat., 3 (1981), 43--60
-
[5]
S. Kumar, I. H. Sloan, A new collocation-type method for Hammerstein integral equations, J. Math. Comput., 48 (1987), 123--129
-
[6]
H. Brunner, Implicitly linear collocation method for nonlinear Volterra equations, J. Appl. Num. Math., 9 (1992), 235--247
-
[7]
H. Guoqiang, Asymptotic error expansion variation of a collocation method for Volterra–Hammerstein equations, J. Appl. Num. Math., 13 (1993), 357--369
-
[8]
P. Baratella, A. P. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Computat. Appl. Math., 163 (2004), 401--418
-
[9]
E. Kreyszig, Introduction Functional Analysis with Applications, John Wiley & Sons, U.S.A. (1978)
-
[10]
A. M. Wazwaz, A First Course in Integral Equations, World Scientific Publishing Company, New Jersey (1997)