# On Critical Exponent for the Existence and Multiplicity of Positive Weak Solutions for a Class of (p, Q)-laplacian Nonlinear System

Volume 3, Issue 4, pp 432--439
• 946 Views ### Authors

M. B. Ghaemi - Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran G. A. Afrouzi - Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, Babolsar, Iran S. H. Rasouli - Department of Mathematics, Faculty of Basic Sciences, Babol University of Technology, Babol, Iran M. Choubin - Department of Mathematics, Faculty of Basic Sciences, Payame Noor University, Tehran, Iran

### Abstract

In this paper, we prove the existence of positive weak solution for the nonlinear elliptic system $\begin{cases} -\Delta_p u=\lambda_1u^a+\mu_1v^b,\,\,\,\,\, x\in\Omega,\\ -\Delta_q v=\lambda_2u^c+\mu_2v^d,\,\,\,\,\, x\in\Omega,\\ u=0=v,\,\,\,\,\, x\in \partial \Omega. \end{cases}$ where $\Delta_sz=div(|\nabla z|^{s-2}\nabla z), s>1, \lambda_1, \lambda_2, \mu_1$ and $\mu_2$ are positive parameters, and $\Omega$ is a bounded domain in $R^N, a + c < p - 1$ and $b + d < q - 1$. We also discuss a multiplicity result when $0 < \lambda_1, \lambda_2, \mu_1, \mu_2<\lambda^*$ for some $\lambda^*$. We obtain our results via the method of sub - and super solutions.

### Keywords

• Positive weak solution
• p-Laplacian
• Sub - and super solutions.

•  35J55
•  35J65

### References

•  J. Ali, R. Shivaji, Positive solutions for a class of p-Laplacian systems with multiple parameters, J. Math. Anal. Appl., 335 (2007), 1013--1019

•  H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620--709

•  C. Chen, On positive weak solutions for a class of quasilinear elliptic systems, Nonlinear Analysis: Theory, Methods & Applications, 62 (2005), 751--756

•  P. Drábek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, Nonlinear Anal., 44 (2001), 189--204

•  P. Drábek, P. Krejčí., P. Takáč, Nonlinear Differential Equations, Chapman & Hall/CRC, Boca Raton (1999)

•  E. K. Lee, R. Shivaji, J. L. Ye, Positive solutions for elliptic equations involving nonlinearities with fallig zeroes, Appl. Math. Letters, 22 (2009), 846--851

•  R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, 109 (1987), 561--566