Existence Solution for Class of p-Laplacian Equations
-
2373
Downloads
-
3675
Views
Authors
Malihe Bagheri
- Department of mathematic, Golestan Institute of Higher Education, Golestan Province, Iran
Mahnaz Bagheri
- Department of Mathematice, Islamic Azad University, behshar Branch, Iran
Abstract
We study existence of positive solution of the equation \[-\Delta_pu=\lambda|u|^{p-2}u+f(x,u)\]
with zero Dirichlet boundary conditions in bounded domain \(\Omega\in \mathbb{R}^n\) where \(\Delta_p\) denotes the p-laplacian operator defined by \(-\Delta_pz=div(|\nabla z|^{p-2}\nabla z); p,\lambda\in \mathbb{R}\) and \(p>1\).Our main result establishes the existence of weak solution.
Share and Cite
ISRP Style
Malihe Bagheri, Mahnaz Bagheri, Existence Solution for Class of p-Laplacian Equations, Journal of Mathematics and Computer Science, 4 (2012), no. 1, 53--59
AMA Style
Bagheri Malihe, Bagheri Mahnaz, Existence Solution for Class of p-Laplacian Equations. J Math Comput SCI-JM. (2012); 4(1):53--59
Chicago/Turabian Style
Bagheri, Malihe, Bagheri, Mahnaz. "Existence Solution for Class of p-Laplacian Equations." Journal of Mathematics and Computer Science, 4, no. 1 (2012): 53--59
Keywords
- p-laplacian
- weak solution
- homogenous.
MSC
References
-
[1]
P. Drábek, Y. X. Huang, Bifurcation problems for the p-Laplacian in \(\mathbb{R}^n\), Trans. Amer. Math. Soc., Vol. 349, 171--188 (1997)
-
[2]
P. Drábek, Y. X. Huang, Multiple positive solutions of quasilinear elliptic equations in \(\mathbb{R}^n\), Nonlinear Analysis, Vol. 37, 457--466 (1999)
-
[3]
S. I. Pohozaev, About one approach to the nonlinear equations, Dokl. Akad. Nauk. (RAC USSR), 241 (1979), 1327--1331
-
[4]
S. I. Pohozaev, On fibering method for the solution of nonlinear boundary value problems, Trudy Matematicheskogo Instituta imeni VA Steklova, 192 (1990), 140--163
-
[5]
A. Anane, Simplicité et isolation de la premiere valeur propre du p-laplacien avec poids, Comptes rendus de l'Académie des sciences, 305 (1987), 725--728
-
[6]
G. Barles , Remarks on uniqueness results of the first eigenvalue of the p-Laplacian, In: Annales de la Faculté des sciences de Toulouse: Mathématiques, 9 (1988), 65---75