Adaptive Robust PID Controller Design Based on a Sliding Mode for Uncertain Chaotic Systems
-
3036
Downloads
-
5125
Views
Authors
Yaghoub Heidari
- Department of Electrical, Nour Branch, Islamic Azad University, Nour, Iran
Rashin Nimaeeb Rad
- Department of Mathematics, Nour Branch, Islamic Azad University, Nour, Iran
Abstract
A robust adaptive PID controller design motivated from the sliding mode control is proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, \(K_p, K_i\), and \(K_d\), are adjustable parameters and will be updated online with an adequate adaptation mechanism to minimize a previously designed sliding condition. By introducing a supervisory controller, the stability of the closed-loop PID control system under with the plant uncertainty and external disturbance can be guaranteed. Finally, a well-known Vanderpol oscillator is used as an illustrative to show the efectiveness of the proposed robust a PID controller.
Share and Cite
ISRP Style
Yaghoub Heidari, Rashin Nimaeeb Rad, Adaptive Robust PID Controller Design Based on a Sliding Mode for Uncertain Chaotic Systems, Journal of Mathematics and Computer Science, 4 (2012), no. 1, 71--80
AMA Style
Heidari Yaghoub, Nimaeeb Rad Rashin, Adaptive Robust PID Controller Design Based on a Sliding Mode for Uncertain Chaotic Systems. J Math Comput SCI-JM. (2012); 4(1):71--80
Chicago/Turabian Style
Heidari, Yaghoub, Nimaeeb Rad, Rashin. "Adaptive Robust PID Controller Design Based on a Sliding Mode for Uncertain Chaotic Systems." Journal of Mathematics and Computer Science, 4, no. 1 (2012): 71--80
Keywords
- Robust
- PID
- Adaptive
- Vanderpol
- Chaos
MSC
References
-
[1]
H. Khalil, Noninear systems, Prentice Hall, New Jersey (1996)
-
[2]
W. D. Chang, J. J. Yan, Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems, Chaos Solitons Fractals, 26 (2005), 167--175
-
[3]
K. Hackl, C. Y. Yang, A. H. D. Cheng, Stability, bifurcation and chaos of non-linear structures with control--I. Autonomous case, Int. J. Non-Linear Mech., 28 (1993), 441--454
-
[4]
A. H. D. Cheng, C. Y. Yang, K. Hackl, M. J. Chajes, Stability, bifurcation and chaos of non-linear structures with control--II. Non-autonomous case, Int. J. Non-Linear Mech., 28 (1993), 549--565
-
[5]
R. Tchoukuegno, P. Woafo, Dynamics and active control of motion of a particle in a /6 potential with a parametric forcing, Physica D: Nonlinear Phenomena, 167 (2002), 86--100
-
[6]
R. Tchoukuegno, B. R. N. Nbendjo, P. Woafo, Linear feedback and parametric controls of vibration and chaotic escape in a /6 potential, Int. J. Non-Linear Mech., 38 (2003), 531--541
-
[7]
B. R. N. Nbendjo, R. Tchoukuegno, P. Woafo, Active control with delay of vibration and chaos in a double-well-Duffing oscillator, Chaos Solitons Fractals, 18 (2003), 345--353
-
[8]
R. Yamapi, B. R. Nana Nbendjo, H. G. Enjieu Nkadji , Dynamics and active control of a motion of a driven multi-lmit-cycle Van der Pol oscillator, Int. J. Bifurcation Chaos, Vol. 17, 1343--1354 (2007)
-
[9]
K. J. Åström, T. Hägglund, Automatic tuning of simple regulators with specifications on phase and amplitude margins, Automatica, 20 (1984), 645--651
-
[10]
T. Hägglund, K. J. Åström, Industrial adaptive controllers based on frequency response techniques, Automatica, 27 (1991), 599--609
-
[11]
A. Leva, PID autotuning algorithm based on relay feedback, IEE Proceedings D-Control Theory and Applications, 140 (1993), 328--338
-
[12]
J. Lee, S. W. Sung, Comparison of two identification methods for PID controller tuning, AIChE J., 39 (1993), 695--697
-
[13]
Q. G. Wang, B. Zou, T. H. Lee, Q. Bi, Auto-tuning of multivariable PID controller from decentralized relay feedback, Automatica, 33 (1997), 319--330
-
[14]
D. L. Tsay, H. Y. Chung, C. J. Lee, The adaptive control of nonlinear systems using the Sugeno-Type of fuzzy logic, IEEE Trans. Fuzzy, Vol. 7, 225--229 (1999)
-
[15]
Y. M. Park, M. S. Choi, K. Y. Lee, An optimal tracking neuro-controller for nonlinear dynamic systems, IEEE Trans. Neural Netw., 7 (1996), 1099--1110
-
[16]
L. X. Wang, Adaptive fuzzy systems and control: design and stability analysis, Prentice-Hall, New Jersey (1994)
-
[17]
L. X. Wang, A course in fuzzy systems and control, Prentice-Hall, New Jersey (1997)
-
[18]
C. T. Chen, S. T. Peng, Intelligent process control using neural fuzzy techniques, J. Process Contr., 16 (1999), 493--503
-
[19]
M. A. Mayosky, I. E. Cancelo, Direct adaptive control of wind energy conversion systems using Gaussian networks, IEEE Trans. Neural Netw., 10 (1999), 898--905
-
[20]
W. D. Chang, R. C. Hwang, J. G. Hsieh, Stable direct adaptive neural controller of nonlinear systems based on single auto-tuning neuron, Neurocomputing, 48 (2002), 541--554
-
[21]
F. J. Lin, W. J. Hwang, R. J. Wai , A supervisory fuzzy neural network control system for tracking periodic inputs, IEEE Trans. Fuzzy Syst., 7 (1999), 41--52