On a Pseudo Projective Recurrent Sasakian Manifolds
-
2581
Downloads
-
3771
Views
Authors
A. Singh
- Department of Mathematics, B.B.D. University, Lucknow-226004, Uttar Pradesh, India.
R. Kumar Pandey
- Department of Mathematics, B.B.D. University, Lucknow-226004, Uttar Pradesh, India.
A. Prakash
- Department of Mathematics, N.I.T., Kurukshetra -136119, Haryana, India.
S. Khare
- Department of Mathematics, B.B.D. University, Lucknow-226004, Uttar Pradesh, India.
Abstract
The object of the present paper is to study the pseudo projective \(\phi\)−recurrent Sasakian manifolds.
Share and Cite
ISRP Style
A. Singh, R. Kumar Pandey, A. Prakash, S. Khare, On a Pseudo Projective Recurrent Sasakian Manifolds, Journal of Mathematics and Computer Science, 14 (2015), no. 4, 309-314
AMA Style
Singh A., Pandey R. Kumar, Prakash A., Khare S., On a Pseudo Projective Recurrent Sasakian Manifolds. J Math Comput SCI-JM. (2015); 14(4):309-314
Chicago/Turabian Style
Singh, A., Pandey, R. Kumar, Prakash, A., Khare, S.. "On a Pseudo Projective Recurrent Sasakian Manifolds." Journal of Mathematics and Computer Science, 14, no. 4 (2015): 309-314
Keywords
- Pseudo projective \(\phi\)-symmetric manifold
- pseudo projective \(\phi\)-recurrent manifold
- Einstein manifold.
MSC
References
-
[1]
D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math, 509 , Berlin-Heidelberg-New York (1976)
-
[2]
T. Q. Binh, L. Tamassy, U.C. De, M. Tarafdar, Some remarks on almost Kenmotsu manifolds , Mathematica Pannonica, 13 (2002), 31-39.
-
[3]
U. C. De, A. A. Shaikh, S. Biswas, On \(\phi\)−Recurrent Sasakian manifolds, Novi Sad J. Math, 33(2) (2003), 43-48.
-
[4]
U. C. De, G. Pathak, On 3−dimensional Kenmotsu Manifolds, Indian J. pure appl. Math., 35(2) (2004), 159-165.
-
[5]
U. C. De, A. Yildiz, A. F. Yaliniz, On \(\phi\)−Recurrent Kenmotsu manifolds, Turk J Math, 33 (2009), 17-25.
-
[6]
J. B. Jun , U. C. De, G. Pathak, On Kenmotsu manifolds, J. Korean Math .Soc., 42 (2005), 435-445.
-
[7]
T. Adati, K. Matsumoto, On conformally recurrent and conformally symmetric 𝑃−Sasakian manifolds, TRU Math., 17 (1977), 25-32.
-
[8]
C. Ozgur, U. C. De, On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica, 17(2) (2006), 221-228.
-
[9]
T. Takahashi, Sasakian \(\phi\)−symmetric spaces, Tohoku Math. J., 29 (1977), 91-113.
-
[10]
K. Yano, Concircular geometry, Proc. Imp. Acad., Tokyo, 16 (1940), 195-200.
-
[11]
U. C. De, On \(\phi\)−symmetric Kenmotsu manifolds, Int. Electronic J. Geometry, 1(1) (2008), 33-38
-
[12]
S. S. Shukla, M. K. Shukla, On \(\phi\)−Symmetric para-Sasakian manifolds, Int. Journal of Math. Analysis, 4 (2010), 761-769.
-
[13]
T. Adati, T. Miyazawa, On 𝑃−Sasakian manifolds satisfying certain conditions, Tensor, (N.S.), 33 (1979), 173-178.
-
[14]
I. Sato , On a structure similar to the almost contact structure, Tensor, (N.S.), 30 (1976), 219-224.
-
[15]
S. Tanno, Isometric Immersions of Sasakian manifold in spheres, Kodai Math. Sem. Rep., 21 (1969), 448-458.
-
[16]
D. Tarafdar, U. C. De, On a type of 𝑃−Sasakian manifolds, Extracta Mathematicae, 8(1) (1993), 31-36.
-
[17]
B. Prasad, A pseudo projective curvature tensor on a Riemannian manifolds, Bull. Cal. Math. Soc. , 94 (3) (2002), 163-166.
-
[18]
M. Tarafdar, A. Bhattacharyya, D. Debnath, A type of pseudo projective \(\phi\)−recurrent Trans - Sasakian manifolds, Analele stiintifice ale Universitatii AL.I. Cuza Iasi Tomul LII, f-2, S.I, Mathematica , (2006), 417-422.
-
[19]
Venkatesha, C. S. Bagewadi, On pseudo projective \(\phi\)−recurrent Kenmotsu manifolds, Soochow Journal of Mathematics, 32(3) (2006), 1-7.
-
[20]
Q. Khan, On an Einstein projective Sasakian manifolds, NOVI SAD J. Math., 36(1) (2006), 97-102.
-
[21]
R. S. Mishra, Structure on a differentiable manifold and their applications, Chandrama Prakashan, 50 A, Balrampur House, Allahabad, India (1984)
-
[22]
D. Narain, A. Prakash, B. Prasad, A pseudo projective curvature tensor on a lorentzian Para-Sasakian manifolds, Analele stiintifice ale Universitatii AL.I. Cuza din iasi (S.N.) Mathematica, Tomul LV, fase., 2 (2009), 275-284.