Duality and biorthogonality for g-frames in Hilbert spaces
-
2680
Downloads
-
3696
Views
Authors
Farideh Enayati
- Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Mohammad Sadegh Asgari
- Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Abstract
The main aim of this paper is to define the generalized Riesz-dual sequence from a g-Bessel sequence with respect to a
pair of g-orthonormal bases. We characterize exactly properties of the first sequence in terms of the associated one, which yields
duality relations for the abstract g-frame setting.
Share and Cite
ISRP Style
Farideh Enayati, Mohammad Sadegh Asgari, Duality and biorthogonality for g-frames in Hilbert spaces, Journal of Mathematics and Computer Science, 17 (2017), no. 2, 220-234
AMA Style
Enayati Farideh, Asgari Mohammad Sadegh, Duality and biorthogonality for g-frames in Hilbert spaces. J Math Comput SCI-JM. (2017); 17(2):220-234
Chicago/Turabian Style
Enayati, Farideh, Asgari, Mohammad Sadegh. "Duality and biorthogonality for g-frames in Hilbert spaces." Journal of Mathematics and Computer Science, 17, no. 2 (2017): 220-234
Keywords
- g-orthonormal basis
- g-frames
- g-Riesz-dual sequence
- Riesz-duality.
MSC
References
-
[1]
M. S. Asgari, Operator-valued bases on Hilbert spaces, J. Linear Topol. Algebr., 2 (2013), 201–218.
-
[2]
M. S. Asgari, H. R. Rahimi, Generalized frames for operators in Hilbert spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 20 pages.
-
[3]
P. G. Casazza, G. Kutyniok, Frames of subspaces, Wavelets, frames and operator theory, Contemp. Math., Amer. Math. Soc., Providence, RI, 345 (2004), 87–113.
-
[4]
P. G. Casazza, G. Kutyniok, M. C. Lammers, Duality principles in frame theory, J. Fourier Anal. Appl., 10 (2004), 383–408.
-
[5]
O. Christensen, An introduction to frames and Riesz bases, Second edition, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, [Cham], (2016)
-
[6]
O. Christensen, H. O. Kim, R. Y. Kim, On the duality principle by Casazza, Kutyniok, and Lammers, J. Fourier Anal. Appl., 17 (2011), 640–655.
-
[7]
O. Christensen, X. C. Xiao, Y. C. Zhu, Characterizing R-duality in Banach spaces, Acta Math. Sin. (Engl. Ser.), 29 (2013), 75–84.
-
[8]
I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), 1271–1283.
-
[9]
R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341–366.
-
[10]
X.-X. Guo, g-bases in Hilbert spaces, Abstr. Appl. Anal., 2012 (2012 ), 14 pages.
-
[11]
X.-X. Guo, Operator parameterizations of g-frames, Taiwanese J. Math., 18 (2014), 313–328.
-
[12]
A. Najati, A. Rahimi, Generalized frames in Hilbert spaces, Bull. Iranian Math. Soc., 35 (2009), 97–109.
-
[13]
A. Ron, Z.-W. Shen, Weyl-Heisenberg frames and Riesz bases in \(L_2({R^d})\), Duke Math. J., 89 (1997), 237–282.
-
[14]
D. T. Stoeva, O. Christensen, On R-duals and the duality principle in Gabor analysis, J. Fourier Anal. Appl., 21 (2015), 383–400.
-
[15]
W.-C. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322 (2006), 437–452.
-
[16]
W.-C. Sun, Stability of g-frames, J. Math. Anal. Appl., 326 (2007), 858–868.
-
[17]
J. Wexler, S. Raz, Discrete gabor expansions, Signal Process., 21 (1990), 207–221.
-
[18]
X. M. Xian, Y. C. Zhu, Duality principles of frames in Banach spaces, (Chinese) Acta Math. Sci. Ser. A Chin. Ed., 29 (2009), 94–102.