Numerical Solution of 12th Order Boundary Value Problems by Using Homotopy Perturbation Method
-
2831
Downloads
-
4403
Views
Authors
Mohamed I. A. Othman
- Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt
A. M. S. Mahdy
- Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt
R. M. Farouk
- Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt
Abstract
In this paper, a homotopy-perturbation method (HPM) [1-6, 26-28] is used to solve both linear and
nonlinear Nth boundary value problems with two point boundary conditions for ninth-order, tenth-order
and twelfth-order. By applying (HPM) on three examples the numerical results are compared with the
exact solution, to show effectiveness and accuracy of the method.
Share and Cite
ISRP Style
Mohamed I. A. Othman, A. M. S. Mahdy, R. M. Farouk, Numerical Solution of 12th Order Boundary Value Problems by Using Homotopy Perturbation Method, Journal of Mathematics and Computer Science, 1 (2010), no. 1, 14--27
AMA Style
Othman Mohamed I. A., Mahdy A. M. S., Farouk R. M., Numerical Solution of 12th Order Boundary Value Problems by Using Homotopy Perturbation Method. J Math Comput SCI-JM. (2010); 1(1):14--27
Chicago/Turabian Style
Othman, Mohamed I. A., Mahdy, A. M. S., Farouk, R. M.. "Numerical Solution of 12th Order Boundary Value Problems by Using Homotopy Perturbation Method." Journal of Mathematics and Computer Science, 1, no. 1 (2010): 14--27
Keywords
- HPM
- linear and non-linear problems
- boundary value problem
- Approximate solution
MSC
- 34D10
- 34K27
- 65L10
- 34B05
- 34B15
- 35G30
References
-
[1]
A. Golbabai, M. Javidi, Application of homotopy perturbation method for solving eighth-order boundary value problems, Appl. Math. Comput., 191 (2007), 334--346
-
[2]
J.-H. He, A coupling method of a homotopy technique and a perturbation technique for nonlinear problems, Int. J. Non-Linear Mech., 35 (2000), 37--43
-
[3]
J.-H. He, The homotopy perturbation method for non-linear oscillators with discontinuities, Appl. Math. Comput., 151 (2004), 287--292
-
[4]
J.-H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fractals, 26 (2005), 695--700
-
[5]
J.-H. He, Asymptotology by homotopy perturbation method, Appl. Math. Comput., 156 (2004), 591--596
-
[6]
J.-H. He, Homotopy perturbation method for solving boundary problems, Phys. Lett. A, 350 (2006), 87--88
-
[7]
J.-H. He, Limit cycle and bifurcation of nonlinear problems, Chaos Solitons Fractals, 26 (2005), 827--833
-
[8]
S. Abbasbandy, Iterated Hes homotopy perturbation method for quadratic Riccati differential equation, Appl. Math. Comput., 175 (2006), 581--589
-
[9]
P. D. Ariel, T. Hayat, S. Asghar, Homotopy perturbation method and axisymmetric flow over a stretching sheet, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 399--406
-
[10]
D. D. Ganji, A. Sadighi, Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 411--418
-
[11]
M. Rafei, D. D. Ganji, Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 321--328
-
[12]
A. M. Siddiqui, R. Mahmood, Q. K. Ghori, Homotopy perturbation method for thin film flow of a fourth grade fluid down a vertical cylinder, Phys. Lett. A, 352 (2006), 404--410
-
[13]
M. Ghasemi, M. T. Kajani, E. Babolian, Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method, Appl. Math. Comput., 188 (2007), 446--449
-
[14]
J.-H. He, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. Meth. Appl. Mech. Eng., 167 (1998), 69--73
-
[15]
J.-H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167 (1998), 57--68
-
[16]
J.-H. He, Variational iteration method kind of non-linear analytical technique: some examples, Int. J. Non-Linear Mech., 34 (1999), 699-708
-
[17]
J.-H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115--123
-
[18]
S. Momani, S. Abuasad, Application of He’s variational iteration method to Helmholtz equation, Chaos Solitons Fractals, 27 (2006), 1119--1123
-
[19]
A. A. Soliman, A numerical simulation and explicit solutions of KdV Burgers and Laxs seventh- order KdV equations, Chaos Solitons Fractals, 29 (2006), 294--302
-
[20]
E. M. Abulwafa, M. A. Abdou, A. A. Mahmoud, The solution of nonlinear coagulation problem with mass loss, Chaos Solitons Fractals, 29 (2006), 313--330
-
[21]
Z. M. Odibat, S. Momani, Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27--36
-
[22]
M. Javidi, A. Golbabai, Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method, Chaos Solitons Fractals, 36 (2008), 309--313
-
[23]
I. H. Abdel-Halim Hassan, M. I. A. Othman, A. M. S. Mahdy, Variational iteration method for solving twelve order boundary value problems, Int. J. Math. Anal. (Ruse), 3 (2009), 719--730
-
[24]
J.-H. He, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700--708
-
[25]
J.-H. He, M. A. Abdou, New periodic solutions for nonlinear evolution equations using Expfunction method, Chaos Solitons Fractals, 34 (2007), 1421--1429
-
[26]
J.-H. He, New interpretation of homotopy perturbation method, Internat. J. Modern Phys. B, 20 (2006), 2561--2568
-
[27]
J.-H. He, Homotopy perturbation technique, Comput. Math. Appl. Mech. Eng., 178 (1999), 257--262
-
[28]
J.-H. He, Homotopy perturbation method: A new nonlinear technique, Appl. Math. Comput., 135 (2003), 73--79
-
[29]
J.-H. He, Periodic solutions and bifurcations of delay-differential equations, Phys. Lett. A, 347 (2005), 228--230
-
[30]
J.-H. He, Homotopy-perturbation method for bifurcation of nonlinear problems, Int. J. Nonlinear Sci. Numer. Simul., 6 (2005), 207--208
-
[31]
L. Cveticanin, Homotopy-perturbation method for pure nonlinear differential equation, Chaos Solitons Fractals, 30 (2006), 1221--1230
-
[32]
S. Abbasbandy, Application of He’s homotopy perturbation method for Laplace transform, Chaos Solitons Fractals, 30 (2006), 1206--1212
-
[33]
A. M. Siddiqui, R. Mahmood, Q. K. Ghori, Thin film flow of athird grade fluide on a moving belt by He’s homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 7--14
-
[34]
A. M. Siddiqui, M. Ahmed, Q. K. Ghori, Couette and Poiseuille flows for non-Newtonian fluids, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 15--26
-
[35]
S. J. Liao, An approximate solution technique not dependind on small parameters: A special example, Int. J. Non-Linear Mech., 30 (1995), 371--380
-
[36]
J.-H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals, 19 (2004), 847--851
-
[37]
H. M. Liu, Variational approach to nonlinear electrochemical system, Int. J. Nonlinear Sci. Numer. Simul., 5 (2004), 95–96
-
[38]
I. H. Abdel-Halim Hassan, Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems, Chaos Solitons Fractals, 36 (2008), 53--65
-
[39]
I. H. Abdel-Halim Hassan, Application to differential transformation method for solving systems of differential equations, Appl. Math. Model., 32 (2008), 2552--2559
-
[40]
K. Djidjedi, E. H. Twizell, A. Boutayeb, Numerical methods for special non linear boundary value problems of order 2m., J. Comput. Appl. Math., 47 (1993), 35--45