A £-fuzzy Fixed Point Theorem in Partially Ordered Sets and Applications
-
2952
Downloads
-
5723
Views
Authors
H. Eshaghi-Kenari
- Faculty of Sciences, Islamic Azad University-Ayatollah Amoli branch, Amol, P.O. Box 678, Iran
Abstract
An analogue of £-fuzzy Banach's fixed point theorem in partially ordered sets is proved in this paper, and
several applications to linear and nonlinear matrix equations are discussed.
Share and Cite
ISRP Style
H. Eshaghi-Kenari, A £-fuzzy Fixed Point Theorem in Partially Ordered Sets and Applications, Journal of Mathematics and Computer Science, 1 (2010), no. 1, 40--45
AMA Style
Eshaghi-Kenari H., A £-fuzzy Fixed Point Theorem in Partially Ordered Sets and Applications. J Math Comput SCI-JM. (2010); 1(1):40--45
Chicago/Turabian Style
Eshaghi-Kenari, H.. "A £-fuzzy Fixed Point Theorem in Partially Ordered Sets and Applications." Journal of Mathematics and Computer Science, 1, no. 1 (2010): 40--45
Keywords
- £-Fuzzy contractive mapping
- Complete £-fuzzy metric space
- Fixed point theorem
MSC
- 54A40
- 55M20
- 03E72
- 54F05
- 47H09
References
-
[1]
A. Bjorner, Order-reversing maps and unique fixed points in complete lattices, Algebra Universalis, 12 (1981), 402--403
-
[2]
G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE Trans. Fuzzy Syst., 12 (2004), 45--61
-
[3]
G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy Set theory, Fuzzy Sets and Systems, 133 (2003), 227--235
-
[4]
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst, Fuzzy Sets and Systems, 64 (1994), 395--399
-
[5]
J. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145--174
-
[6]
O. Hadžić, E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht (2001)
-
[7]
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 22 (2004), 1039--1046
-
[8]
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435--1443
-
[9]
R. Saadati, A. Razani, H. Adibi, A Common fixed point theorem in L-fuzzy metric spaces, Chaos Solitons Fractals, 33 (2007), 358--363
-
[10]
R. Saadati, J. H. Park, On the Intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27 (2006), 331--344
-
[11]
R. Saadati, J. H. Park, Intuitionistic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), 85--90