Fixed Point and Hyers-ulam-rassias Stability of a Quadratic Functional Equation in Menger Probabilistic Normed Spaces
-
3606
Downloads
-
4274
Views
Authors
Ehsan Movahednia
- Behbahan Khatam Al-Anbia University of Tecnology.
Sara Eshtehar
- Behbahan Khatam Al-Anbia University of Tecnology.
Abstract
In this paper, using the fixed point alternative approach, we investigate the Hyers Ulam-Rassias stability of the quadratic functional equation \[f(x+y)+f(x-y)=2f(x)+2f(y)\] in Menger probabilistic normed spaces.
Share and Cite
ISRP Style
Ehsan Movahednia, Sara Eshtehar, Fixed Point and Hyers-ulam-rassias Stability of a Quadratic Functional Equation in Menger Probabilistic Normed Spaces, Journal of Mathematics and Computer Science, 5 (2012), no. 1, 22-27
AMA Style
Movahednia Ehsan, Eshtehar Sara, Fixed Point and Hyers-ulam-rassias Stability of a Quadratic Functional Equation in Menger Probabilistic Normed Spaces. J Math Comput SCI-JM. (2012); 5(1):22-27
Chicago/Turabian Style
Movahednia, Ehsan, Eshtehar, Sara. "Fixed Point and Hyers-ulam-rassias Stability of a Quadratic Functional Equation in Menger Probabilistic Normed Spaces." Journal of Mathematics and Computer Science, 5, no. 1 (2012): 22-27
Keywords
- fixed point theory
- Hyers-Ulam-Rassias stability.
MSC
- 47H10
- 46S40
- 39B82
- 39B72
- 65Q20
References
-
[1]
K. Menger, Statistical metrics, Porceedings of the National Academy of Sciences of the United States of America, 28 (1942), 535-537.
-
[2]
B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probabilistic and Applied Mathematics, North-Holland, New York, NY, USA (1983)
-
[3]
A. N. Serstnev, On the motion of a random normed spaces, Doklady Akademii Nauk SSSR, vol. 149, no. 2(1963),280-283, English translation in Soviet Mathematics. Doklady , 4 (1963), 388-390.
-
[4]
B. Schweizer, A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics, 10 (1960), 313-334.
-
[5]
S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley and Sons (1964)
-
[6]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
-
[7]
D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several ariables, Birkhauser, Basel (1998)
-
[8]
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ (2002)
-
[9]
D. Deses, On the representation of non-Archimedean objects, Topology Appl. , 153 (2005), 774-785.
-
[10]
W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math. , 71 (2006), 149-161.
-
[11]
P. Gvavruta, A generalization of themHyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl., 184 (1994), 431-436.
-
[12]
K. Hensel, Ubereine news Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein , 6 (1897), 83-88.
-
[13]
K. W. Jun, H. M. Kim, On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Inequal. Appl., 6 (1) (2003), 87-95.
-
[14]
Y. S. Lee, S. Y. Chung, Stability of the Jensen type functional equation, Banach J. Math. Anal., 1 (1) (2007), 91-100.
-
[15]
K. Mengar, Statistical metrics, Proc. Nat. Acad. Sci., 28 (1942), 535-537.
-
[16]
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
-
[17]
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 123-130.
-
[18]
S. M. Ulam , Problems in Modern Mathematics, Science ed., John Wiley and Sons, New York (1960)
-
[19]
A. N. Serstnev, On the notion of a random normed space, Dokl. Akad. Nauk., 149 (1963), 280-283.
-
[20]
E. Movahednia, Fuzzy Stability of Quadratic Functional Equations in General Cases, ISRN Mathematical Analysis , Hindawi (2011)
-
[21]
E. Movahednia, S. Eshtehar, Y. Son, Stability of Quadratic Functional Equations in Fuzzy Normed Spaces, Int. Journal of Math. Analysis, 6 (2012), 2405 - 2412.
-
[22]
D. Mihet , V. Radu , Generalized pseudo-metrics and fixed points in probabilistic metric spaces, Carpathian Journal of Mathematics, 23 (2007), 126–132.