Stabilization of Dynamic Systems by Localization of Eigenvalues in a Specified Interval
-
2384
Downloads
-
3481
Views
Authors
H. Ahsani Tehrani
- Department of Mathematics, Shahrood University of Technology, Shahrood, Iran.
Abstract
This paper is concerned with the problem of designing linear time-invariant control systems with closed-loop eigenvalues in a prescribed region of stability. First, we obtain a state feedback matrix which assigns all the eigenvalues to zero, and then by elementary similarity operations we find a state feedback which assigns the eigenvalues in the interval shown in figure 1.
This new algorithm can also be used for the placement of closed-loop eigenvalues in a specified interval in z-plane and can be employed for large-scale linear time-invariant control systems. Some illustrative examples are presented to show the advantages of this new technique.
Share and Cite
ISRP Style
H. Ahsani Tehrani, Stabilization of Dynamic Systems by Localization of Eigenvalues in a Specified Interval, Journal of Mathematics and Computer Science, 7 (2013), no. 2, 144 - 153
AMA Style
Tehrani H. Ahsani, Stabilization of Dynamic Systems by Localization of Eigenvalues in a Specified Interval. J Math Comput SCI-JM. (2013); 7(2):144 - 153
Chicago/Turabian Style
Tehrani, H. Ahsani. "Stabilization of Dynamic Systems by Localization of Eigenvalues in a Specified Interval." Journal of Mathematics and Computer Science, 7, no. 2 (2013): 144 - 153
Keywords
- linear time-invariant systems
- State feedback matrix
- Localization of eigenvalues
- interval
- Large-scale systems
MSC
References
-
[1]
M. H. Amin, Optimal discrete systems with prescribed eigenvalues, International journal of control, 40 (1984), 783-794.
-
[2]
A. Arjmandzadeh, S. Effati, M. Zamirian, Interval Support Vector Machine in Regression Analysis, The Journal of Mathematics and Computer Science, 2 (2011), 565 - 571
-
[3]
P. Benner, M. Castillo, E. S. Quintana-orti, Partial stabilization of large-scale discrete-time linear control systems, Technical Report, University of Bremen, Germany (2001)
-
[4]
J. H. Chou, Pole assignment robustness in a specified disk , Systems & Control Letters, 16 (1991), 41-44.
-
[5]
M. M. Fateh, H. Ahsani Tehrani, S. M. Karbassi, Repetitive control of electrically driven robot manipulators, International Journal of Systems Science, 775-785 (2013)
-
[6]
J. L. Figueroa, J. A. Romagnoli, An algorithm for robust pole assignment via polynomial approach, IEEE Transactions on Automatic Control, 39 (1994), 831- 835.
-
[7]
K. Furuta, S. B. Kim, Pole assignment in a specified disk, IEEE Transactions on Automatic Control, 32 (1987), 423-427.
-
[8]
L. Grammont, A. Largillier, Krylov method revisited with an application to the localization of eigenvalues, Numerical Functional Analysis and Optimization, 27 (2006), 583-618.
-
[9]
A. H. Borzabadi, L. Heidarian, Determining the objective value range for a class of interval convex optimization problems, The Journal of Mathematics and Computer Science, 3 (2011), 396 - 402
-
[10]
S. M. Karbassi, D. J. Bell , Parametric time-optimal control of linear discrete-time systems by state feedback-Part 1: Regular Kronecker invariants, International journal of control, 57 (1993), 817-830.
-
[11]
S. M. Karbassi, D.J. Bell, Parametric time-optimal control of linear discrete-time systems by state feedback-Part 2: Irregular Kronecker invariants, International journal of control, 57 (1993), 831-83.
-
[12]
S. M. Karbassi, H. A. Tehrani , Parameterizations of the state feedback controllers for linear multivariable systems, Computers and Mathematics with Applications, 44 (2002), 1057-1065.
-
[13]
H. A. Tehrani, Assignment of Eigenvalues in a Disc D (c, r) of Complex Plane with Application of the Gerschgorin Theorem, World Applied Sciences Journal, 5 (5) (2008), 576-581.
-
[14]
L. Yuan, L. E. K. Achenie, W. Jiang, Linear quadratic optimal output feedback control for systems with poles in a specified region , International journal of control, 64 (1996), 1151- 1164.