Notes and Examples on Intuitionistic Fuzzy Metric Space
-
3446
Downloads
-
4563
Views
Authors
H. Shojaei
- Department of Mathematics, Payame-Noor-University, Tehran, Iran.
Abstract
Park introduced and discussed in [11] a notion of intuitionistic fuzzy metric space which is based both on the idea of intuitionistic fuzzy set due to Atanassov [1], and the concept of a fuzzy metric space given by George and Veeramani in [5] and [9]. We show an application and some examples of intuintionistic fuzzy metric spaces.
Share and Cite
ISRP Style
H. Shojaei, Notes and Examples on Intuitionistic Fuzzy Metric Space, Journal of Mathematics and Computer Science, 8 (2014), no. 3, 187-192
AMA Style
Shojaei H., Notes and Examples on Intuitionistic Fuzzy Metric Space. J Math Comput SCI-JM. (2014); 8(3):187-192
Chicago/Turabian Style
Shojaei, H.. "Notes and Examples on Intuitionistic Fuzzy Metric Space." Journal of Mathematics and Computer Science, 8, no. 3 (2014): 187-192
Keywords
- Fuzzy metric
- Compact subset
- Intuitionistic fuzzy metric spaces
- Hausdorff fuzzy metric.
MSC
References
-
[1]
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1386), 87-96.
-
[2]
G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, Dordrecht (1993)
-
[3]
J. Buckley, E. Eslami, An Introduction to fuzzy logic and fuzzy set, Physica-verlag , Heidelberg (2002)
-
[4]
R. Engelking, General topology, PWN-Polish Sci. Publ, Warsaw (1977)
-
[5]
A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems , 64 (1994), 395–399.
-
[6]
A. George, P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy Math., 3 (1995), 933–940.
-
[7]
V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems , 115 (2000), 485–489.
-
[8]
V. Gregori, S. Romaguera, A. Sapena, Uniform continuity in fuzzy metric spaces, Rend. Istit. Mat. Univ. Trieste , 32 (2001), 81–88.
-
[9]
V. Gregori, S. Romaguera, P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals , 28 (2006), 902–905.
-
[10]
D. Mihet, A Banach contraction theorem in fuzzy metric spaces , Fuzzy Sets and Systems, 431-439 (to appear)
-
[11]
J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons &Fractals, 22 (2004), 1039-46.
-
[12]
J. Rodriguez-Lopez, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147 (2004), 273–283.
-
[13]
N. Sinisa.Jesic, A. Natasa. Babacev, Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition, Chaos, Solitons &Fractals , 37 (2008), 675-687.
-
[14]
H. Shojaei, K. Banaei, N. Shojaei, , J. Math. Computer Sci., 6 (2013), - 118
-
[15]
H. Shojaei, R. Mortezaei, , J. Math. Computer Sci., 6 (2013), 201-209