Jessen type functionals and exponential convexity
-
2526
Downloads
-
4362
Views
Authors
Rishi Naeem
- School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan
Matloob Anwar
- School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan
Abstract
In this paper, we introduce the extension of Jessen functional and
investigate logarithmic and exponential convexity. We also give mean
value theorems of Cauchy and Lagrange type. Several families of
functions are also presented related to our main results.
Share and Cite
ISRP Style
Rishi Naeem, Matloob Anwar, Jessen type functionals and exponential convexity, Journal of Mathematics and Computer Science, 17 (2017), no. 3, 429-436
AMA Style
Naeem Rishi, Anwar Matloob, Jessen type functionals and exponential convexity. J Math Comput SCI-JM. (2017); 17(3):429-436
Chicago/Turabian Style
Naeem, Rishi, Anwar, Matloob. "Jessen type functionals and exponential convexity." Journal of Mathematics and Computer Science, 17, no. 3 (2017): 429-436
Keywords
- Jessen functional
- exponential convexity
- mean value theorems.
MSC
References
-
[1]
M. Adil Khan, T. Ali, A. Kılıçman, Q. Din, Refinements of Jensen’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Filomat, 30 (2016), 803–814.
-
[2]
M. Adil Khan, G. Ali Khan, T. Ali, A. Kılıçman, On the refinement of Jensen’s inequality, Appl. Math. Comput., 262 (2015), 128–135.
-
[3]
M. Adil Khan, J. Khan, J. Pečarić, Generalization of Jensen’s and Jensen-Steffensen’s inequalities by generalized majorization theorem, J. Math. Inequal., 11 (2017), 1049-1074
-
[4]
M. Anwar, N. Latif, J. Pečarić, Positive semidefinite matrices, exponential convexity for majorization, and related Cauchy means, J. Inequal. Appl., 2010 (2010 ), 19 pages.
-
[5]
P. R. Beesack, J. Pečarić, On Jessen’s inequality for convex functions, J. Math. Anal. Appl., 110 (1985), 536–552.
-
[6]
S. N. Bernstein, Sur les fonctions absolument monotones, (French) Acta Math., 52 (1929), 1–66.
-
[7]
S. I. Butt, R. Jakšetić, L. Kvesić, J. Pečarić, n-exponential convexity of weighted Hermite-Hadamard’s inequality, J. Math. Inequal., 8 (2014), 299–311.
-
[8]
S. S. Dragomir, M. Adil Khan, A. Abathun , Refinement of the Jensen integral inequality, Open Math., 14 (2016), 221–228.
-
[9]
S. Iqbal, K. Krulić Himmelreich, J. Pečarić, D. Pokaz, n-exponential convexity of Hardy-type and Boas-type functionals, J. Math. Inequal., 7 (2013), 739–750.
-
[10]
J. Jakšetić, R. Naeem, J. Pečarić , Exponential convexity for Jensen’s inequality for norms, J. Inequal. Appl., 2016 (2016 ), 8 pages.
-
[11]
J. Jakšetić, J. Pečarić , Exponential convexity method, J. Convex Anal., 20 (2013), 181–197.
-
[12]
B. Jessen, Bemærkninger om konvekse Funktioner og Uligheder imellem Middelværdier, I, Mat. Tidsskrift B, (1931), 17–28.
-
[13]
S. Khalid, J. Pečarić, On the refinements of the integral Jensen-Steffensen inequality, J. Inequal. Appl., 2013 (2013 ), 18 pages.
-
[14]
K. A. Khan, A. Nosheen, J. Pečarić, n-exponential convexity of some dynamic Hardy-type functionals, J. Math. Inequal., 8 (2014), 331–347.
-
[15]
A. R. Khan, J. Pečarić, M. R. Lipanović, n-exponential convexity for Jensen-type inequalities, J. Math. Inequal., 7 (2013), 313–335.
-
[16]
A. M. Mercer, An ”error term” for the Ky Fan inequality, J. Math. Anal. Appl., 220 (1998), 774–777.
-
[17]
A. M. Mercer, Some new inequalities involving elementary mean values, J. Math. Anal. Appl., 229 (1999), 677–681.
-
[18]
R. Naeem, m-Exponential convexity of refinements of Hermite-Hadamards inequality, Proc. Pakistan Acad. Sci., 54 (2017), 197–205.
-
[19]
J. Pečarić, J. Perić, Improvements of the Giaccardi and the Petrovi inequality and related Stolarsky type means, An. Univ. Craiova Ser. Mat. Inform., 39 (2012), 65–75.
-
[20]
J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA (1992)
-
[21]
D. V. Widder, Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Bull. Amer. Math. Soc., 40 (1934), 321–326.