A Numerical Method for Space Fractional Diffusion Equations Using a Semi-disrete Scheme and Chebyshev Collocation Method
-
3511
Downloads
-
4580
Views
Authors
Hadi Azizi
- Department of Mathematics, Taft Branch, Islamic Azad University, Taft, Iran.
Ghasem Barid Loghmani
- Department of Mathematics, Yazd University, Yazd, Iran.
Abstract
In the present paper, a numerical approach to efficiently calculate the solution of space fractional
diffusion equations is investigated. The finite difference scheme and Chebyshev collocation method is
applied to solve this problems. Also, the matrix form of the proposed method is obtained. The
numerical examples and comparison with other methods shows that the present method is effective.
Share and Cite
ISRP Style
Hadi Azizi, Ghasem Barid Loghmani, A Numerical Method for Space Fractional Diffusion Equations Using a Semi-disrete Scheme and Chebyshev Collocation Method, Journal of Mathematics and Computer Science, 8 (2014), no. 3, 226-235
AMA Style
Azizi Hadi, Loghmani Ghasem Barid, A Numerical Method for Space Fractional Diffusion Equations Using a Semi-disrete Scheme and Chebyshev Collocation Method. J Math Comput SCI-JM. (2014); 8(3):226-235
Chicago/Turabian Style
Azizi, Hadi, Loghmani, Ghasem Barid. "A Numerical Method for Space Fractional Diffusion Equations Using a Semi-disrete Scheme and Chebyshev Collocation Method." Journal of Mathematics and Computer Science, 8, no. 3 (2014): 226-235
Keywords
- Fractional diffusion equation
- Finite difference
- Collocation
- Chebyshev polynomials
MSC
- 65M06
- 65M12
- 35K05
- 35R11
- 65M15
References
-
[1]
G. A. Afrouzi, R. A. Talarposhti, H. Ahangar , Explicit analytical solution for a kind of time-fractional evolution equations by He’s Homotopy perturbation methods, J. Math. Comput. Sci. ( TJMCS) , 4 (2012), 278-282
-
[2]
Z. Avazzadeh, Z. Beygi Rizi, F. M. Maalek Ghaini, G. B. Loghmani, A numerical solution of nonlinear parabolic-type Volterra partial integrodifferential equations using radial basis functions, Eng. Anal. Bound. Elem. , 36 (2012), 881-893.
-
[3]
R. Darzi, B. Mohammadzade, S. Mousavi, R. Beheshti, Sumudu transform method for solving fractional differential equations and fractional Diffusion-Wave equation, J. Math. Comput. Sci. ( TJMCS) , 6 (2013), 79-84
-
[4]
K. Diethelm, The analysis of fractional differential equation, Springer-Verlag , Berlin (2010)
-
[5]
G. J. Fix, J. P. Roop, Least squares finite element solution of a fractional order two-point boundary value problem, Comput. Math. Appl. , 48 (2004), 1017-1033.
-
[6]
M. M. Khader , On the numerical solutions for the fractional diffusion equation, Commun. Nonlinear Sci. Numer. Simul. , 16 (2011), 2535-2542.
-
[7]
F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Plank equation, J. Comput. Appl. Math. , 166 (2004), 209-219.
-
[8]
JT. Machado, V. Kiryakova, F. Mainardi, Rcent history of fractional caculus, Commun Nonlinear Sci. Numer. Simul. , 16 (2011), 1140-1153.
-
[9]
J. C. Mason, D. C. Handscomb, Chebyshev polynomials, CRC press, Boca Raton (2003)
-
[10]
M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. , 172 (2004), 65-77.
-
[11]
M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80-90.
-
[12]
M. M. Meerschaert, H. P. Scheffler, C. Tadjeran, Finite difference methods for two-dimensional fractional dispersion equations, J. Comput. Phys., 211 (2006), 249-261.
-
[13]
A. Neamaty, B. Agheli, R. Darzi, Solving fractional partial differential equation by using wavelet operational method, J. Math. Comput. Sci. ( TJMCS) , 7 (2013), 230 - 24 0
-
[14]
Y. Rossikhin, M. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev. , 63 (2010), 1-52.
-
[15]
A. Saadatmandi, M. Dehghan, A tau approach for solution of the space fractional diffusion equation, Compute. Math. Appl. , 62 (2011), 1135-1142.
-
[16]
E. Sousa, Numerical approximations for fractional diffusion equation via splines, Compute. Math. Appl. , 62 (2011), 938-944.
-
[17]
N. H. Sweilam, M. M. Khader, A. M. Nagy, Numerical solution of twosided space-fractional wave equation using finite difference method , J. Comput. Appl. Math, 235 (2011), 2832-2841.
-
[18]
C. Tadjeran, M. M. Meerschaert, H. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. , 213 (2006), 205-213.
-
[19]
C. Tadjeran, M. M. Meerschaert, A second-order accurate numerical approximation for the two-dimensional fractional diffusion equation, J. Comput. Phys. , 220 (2007), 813-823.